以下是我的测试数据源,只有一个CSV格式的文件,100万行7列数字格式的数据A, B C, D, E, F 和G: ? 在本次测试当中,我使用了SQL Server 事件探查器去计算刷新的时间。...: 表中列的数量是否影响合并查询时的效率?...首先,我对这个CSV文件创建了两个连接,按照惯例,将第一行转为标题,将7列数字全都定义为整数格式。...为了这样测试,我在两个查询中又添加了一个步骤,删除B-G列,只剩下A列: let Source = Csv.Document( File.Contents("C:\NumbersMoreColumns.csv...其实合并查询删掉不必要的列,可以有两种方式,一种是如今天说的,在合并查询之前删掉;另外,我们也可以在合并查询后对不需要的列进行删除。 从逻辑上来看,合并查询后再删除列,很明显要比今天说的浪费时间。
Series Series 可以自定义标签(索引),然后通过索引来访问数组中数据,下面通过示例来了解一下。...DataFrame 支持多种类型的输入数据,下面通过示例来做进一步了解。...) # 某一行某一列数据 print(df.loc[1, 'name']) # 某一行指定列数据 print(df.loc[1, ['name', 'age']]) # 某一行所有列数据 print(df.loc...print(df.iloc[:, 0]) # 取某一个值 print(df.iloc[0, 1]) 3.3 添加删除 我们通过示例来看一下如何向 DataFrame 中添加数据以及如何从其中删除数据。...=True) print(pd7) ''' 删除 参数1:要删除的标签 参数2:0 表示行,1 表示列 参数3:是否在当前 df 中执行该操作 ''' df5.drop(['c'], axis=1, inplace
#将DataFrame存储到csv文件中,index表示是否显示行名,default=True dataFrame.to_csv("test.csv", index=False, sep='|')...3 行列 3.1 查找 查找DataFrame数据类型中的某一(多)行(列) 这里记录三个可以实现该功能的函数:loc、iloc、ix。...删除DataFrame中某一行 df.drop([16,17]) 3.3....df.reset_index() 5 重复项 5.1 查看是否存在重复项 DataFrame的duplicated方法返回一个布尔型Series,表示各行是否重复行。...''' 6.2 修改 修改DataFrame中的某一元素 df['列名'][行序号(index)] = "新数据"
从现有的列创建新列: ? 从 DataFrame 里删除行/列 想要删除某一行或一列,可以用 .drop() 函数。...请务必记住,除非用户明确指定,否则在调用 .drop() 的时候,Pandas 并不会真的永久性地删除这行/列。这主要是为了防止用户误操作丢失数据。 你可以通过调用 df 来确认数据的完整性。...如果你确定要永久性删除某一行/列,你需要加上 inplace=True 参数,比如: ?...获取 DataFrame 中的一行或多行数据 要获取某一行,你需要用 .loc[] 来按索引(标签名)引用这一行,或者用 .iloc[],按这行在表中的位置(行数)来引用。 ?...假如你不确定表中的某个列名是否含有空格之类的字符,你可以通过 .columns 来获取属性值,以查看具体的列名。 ?
比如: 数据拥有大量的分片 数据倾斜 宽表 空表 空行 空文件 中文行和中文列 超长列名 包含特殊字符的数据 针对上面说的一些数据场景我挑几个重要的说一下: 数据拥有大量分片 在分布式计算中,一份数据是由多个散落在...中每一个数据都是一行,也就是一个Row对象,而且dataframe对于每一列也就是每个schema有着严格的要求。...然后通过DataTypes的API创建schema。 这样我们的列信息就有了。 然后是关键的我们如何把一个RDD转换成dataframe需要的Row并且填充好每一行的数据。...直接返回随机字符串和int类型的数。 然后我们有了这个每一行数据都是Row对象的RDD后。 就可以通过调用下面的API来生成dataframe。...上面的代码片段是我们嵌入spark任务的脚本。 里面t1和t2都是dataframe, 分别代表原始数据和经过数据拆分算法拆分后的数据。 测试的功能是分层拆分。 也就是按某一列按比例抽取数据。
对象可以是列表\ndarray、字典以及DataFrame中的某一行或某一列 2 pd.DataFrame(data,columns = [ ],index = [ ]) 创建DataFrame。...9 .drop() 删除Series和DataFrame指定行或列索引。 10 .loc[行标签,列标签] 通过标签查询指定的数据,第一个值为行标签,第二值为列标签。...] 通过整数位置,从DataFrame选取单个列或列子集 7 df.iloc[where_i,where_j] 通过整数位置,同时选取行和列 8 df.at[1abel_i,1abel_j] 通过行和列标签...,选取单一的标量 9 df.iat[i,j] 通过行和列的位置(整数),选取单一的标量 10 reindex 通过标签选取行或列 11 get_value 通过行和列标签选取单一值 12 set_value...3 .drop_duplicates() 删除重复行,返回删除后的DataFrame对象。
其中跟R中的data.table有点像的是,可以通过data[1],就是选中了第一行。...) =R=apply(df,2,mean) #df中的pop,按列求均值,skipna代表是否跳过均值 这个跟apply很像,返回的是按列求平均。...(1)pd.DataFrame+pd.Series不能通过(index=None)来消除index: 所以,DataFrame/series也是不能通过以下的办法来取消索引: data1=pd.Series...2 c 3 d 4 (2)通过reset_index来消除index 官方地址 DataFrame.reset_index(level=None, drop=False, inplace=False..., col_level=0, col_fill='') #inplace,是否删除原索引 #drop,删除原索引后,时候生成新的Index列 可以来看一下这个函数的效果: data2=pd.DataFrame
,包含行与列的信息 数据选取 iloc 我觉得pandas里面选取数据的一个很通用的方法是iloc pd.iloc[行序号, 列序号] iloc的参数用逗号隔开,前面是行序号,后面是列序号 import...,我们想把这两个表通过员工姓名合在一起,怎么实现呢 表合并函数merge merge函数可以指定以某一列来合并表格 import pandas as pd # 创建两个示例 DataFrame df1...name这一列来合并表格 分组函数groupby 想象一个场景,一个表中每行记录了某个员工某日的工作时长,如下 import pandas as pd df = pd.DataFrame({'str...,我们要把a和b先分组,这就是groupby函数的作用 groupby函数的参数是决定根据哪一列来进行分组的 import pandas as pd df = pd.DataFrame({'str'...在机器学习竞赛时,有时我们想删除一些无用特征,怎么实现删除无用特征的列呢?
对象可以是列表\ndarray、字典以及DataFrame中的某一行或某一列 2 pd.DataFrame(data,columns = [ ],index = [ ]) 创建DataFrame。...9 .drop() 删除Series和DataFrame指定行或列索引。 10 .loc[行标签,列标签] 通过标签查询指定的数据,第一个值为行标签,第二值为列标签。...,选取单列或列子集 4 df.1oc[val1,val2] 通过标签,同时选取行和列 5 df.iloc[where] 通过整数位置,从DataFrame选取单个行或行子集 6 df.iloc[where_i...,where_j] 通过整数位置,同时选取行和列 7 df.at[1abel_i,1abel_j] 通过行和列标签,选取单一的标量 8 df.iat[i,j] 通过行和列的位置(整数),选取单一的标量...3 .drop_duplicates() 删除重复行,返回删除后的DataFrame对象。
需要注意的是,在访问dataframe时,访问df中某一个具体元素时需要先传入行表索引再确定列索引。 2....多行连接 与多列连接的方式仅在于axis 参数指定,axis=0按行操作即多行连接,否则按列连接 # 删除一列,在原有的dataframe上进行操作 del df['日期'] 或是使用 pop 方法...,返回被删除的数据列(只能是某一列) df.pop('cx') # 通过 drop 方法,可以指定删除多列 df.drop(['a', 'b'], axis=0,1) # axis 指定按行执行或是按列执行...# 删除行 也可以通过drop 操作 df.drop(['a', 'b']) # 可以指定多行 # 通过切片,布尔判断 也可以实现 以上只是基本的修改,删除新增的方式,更复杂的 过滤 筛选 计数 排序...5. reset_index() 方法 重置series 的index索引,同时有drop 参数可以选择是否删除索引。
对于DataFrame对象,可以使用DataFrame[列名].isnull()来判断具体某一列的每一项是否有空缺值。 7....对于DataFrame对象,可以使用print(DataFrame[DataFrame[列名].isnull()])来找到某一列存在缺失值的行。 9....如果缺失值较多,那么可以使用fillna()方法,会把缺失值替换成传入的参数;当往fillna()中传入的是字典时,可以同时替换不同列的缺失值。 3....删除的数据是第二次出现的值,第一次出现的值保持不变。 3. 统一数据,可以使用replace("原始值",”新值“)来统一数据。 4....对于Series对象,可以通过astype()方法来改变类型。 5. 对于数值数据,我们可以直接进行计算;对于分类数据,推荐转化为"category"类型。 保存数据 1.
Pandas 为 Python 带来了两个新的数据结构,即 Pandas Series(可类比于表格中的某一列)和 Pandas DataFrame(可类比于表格)。...dtype来设置该列的数据类型。...df.iloc[0,1] #先访问行再访问列 df['two']['a'] #先访问列再访问行 out: 2 3、删除、增加元素 使用.drop函数删除元素,默认为删除行,添加参数...axis = 1来删除列。...删除NaN – df.dropna() dropna()函数还有一个参数是how,当how = all时,只会删除全部数据都为NaN的列或行。
DataFrame.astype()函数将DataFrame中的某一列或多列转换为指定的数据类型,或将整个DataFrame转换为指定的数据类型。...它可以通过行标签和列标签来定位和访问数据,并支持切片操作。...loc函数用于基于标签定位和访问DataFrame或Series中的数据。它可以通过行标签和列标签来定位和访问数据,并支持切片操作。...数据删除 按列删除数据 drop() 在Python中,drop函数通常用于删除DataFrame或Series中的指定行或列。...示例 【例】请构建如下DataFrame数据并利用Python删除下面DataFrame实例的第四列数据。 关键技术:该案例中,使用DataFrame的drop()方法,删除数据中某一列。
",ascending=False) # 取行或取列 # 以下我们认为attr3中有很多数据,字段还是和上面的一样 # 取前50行数据 attr3[:50] # 取前20行的name字段 attr3[:...20]['name'] # 单独取某一列的数据 attr3['name'] # 通过标签取某个值 # attr4数据假如是这样 name age tel 0 张三 18 10010...缺失数据的处理 我们如果读取爬去到的大量数据,可能会存在NaN值。 出现NaN和numpy中是一样的,表示不是一个数字。 我们需要把他修改成0获取其他中值,来减少我们计算的误差。...# 判断是否为NaN pd.isbull(attr4) # 还有一个pd.notbull(attr4) 刚好相反 # 取值不为空的name列 attr4[pdnotnull(attr4['name'])...] # 删除存在NaN的行 attr4.deopna(axis=0) # 列就是axis = 1 # 想删除某一列全部为NaN的行 attr4.deopna(axis=0,how='all') # 只要有一个
subset:用来指定特定的列,根据指定的列对数据框去重。默认值为None,即DataFrame中一行元素全部相同时才去除。...若选last为保留重复数据的最后一条,若选False则删除全部重复数据。 inplace:是否在原数据集上操作。...四、按照多列去重 对多列去重和一列去重类似,只是原来根据一列是否重复删重。现在要根据指定的列判断是否存在重复(顺序也要一致才算重复)删重。...原始数据中只有第二行和最后一行存在重复,默认保留第一条,故删除最后一条得到新数据框。 想要根据更多列数去重,可以在subset中添加列。...但是对于两列中元素顺序相反的数据框去重,drop_duplicates函数无能为力。 如需处理这种类型的数据去重问题,参见本公众号中的文章【Python】基于多列组合删除数据框中的重复值。 -end-
Python提供了丰富的库和工具来处理这些问题,如pandas库可以帮助我们方便地处理数据框(DataFrame)中的缺失值和重复值。对于异常值,我们可以通过统计分析、可视化等方法来识别和处理。...利用duplicated()方法检测冗余的行或列,默认是判断全部列中的值是否全部重复,并返回布尔类型的结果。对于完全没有重复的行,返回值为False。...在该案例中,首先使用pandas库中的query方法查询数据中是否有异常值。然后通过boxplot方法检测异常值。代码及运行结果如下: 下面以箱形图的方法来进行异常值检测。...关键技术:该案例中,使用DataFrame的drop()方法,删除数据中某一列。 drop()方法的参数说明如下: labels:表示行标签或列标签。...按行删除数据 【例】对于上例中的DataFrame数据,请利用Python删除下面DataFrame实例的第四行数据。
5,数据清洗 主要用isnull()判断值是否为空,notnull()判断值是否不为空,返回的都是值为bool型的Series,然后把它作为索引,就可以把为False的值给删除。 ? ...二、DataFrame DataFrame是一个表格型的数据结构,DataFrame由一定顺序排列的多列数据组成,设计初衷是将Series的使用场景从一维拓展到多维,DataFrame既有行索引index...4.2 还可以用drop(),drop系列的函数中,axis=1表示列,axis=0代表行,这和其他所有场景都是相反的 ? 4.3 上面两种清洗方法都是删除整行或者,整列,有时是不允许这样子删除。...7,合并 合并用merge().它和数据库中的链表差不多 merge和concat的区别在于,merge需要依据某一共同的列进行合并。...在使用merge时,会自动根据两者相同的columns,来合并 每一列元素不要求一致 参数: how:out取并集,inner取交集 on:当两者有多列的名字相同时,我们想指定某一列进行合并,那我们就要把想指定列的名字赋给它
value_counts(), 返回各个不同的元素,并计算元素在Series中的个数。 isin(), 用来判断所属关系,判断给定的一列元素是否包含在Series数据结构中。isin()返回布尔值。...定义方法:通常通过传递一个dict字典对象来构造。...data={('colors':[],'object':[],'price':[])} frame=pd.DataFrame(data) 也可以只选取data中的部分数据来构造DataFrame() frame...获取一行的数据:frame.ix[3] 获取多行:frame.ix[[1,2,5]] 获取多行:frame.in[0:5] 获取某一个元素,需要指定列名称和行名称:frame['price'][4]...删除一列: del frame['new'] 筛选: frame[frame>4],大于4的值返回,其他值为空。
分析前操作 我们使用read读取数据集时,可以先通过info 方法了解不同字段的条目数量,数据类型,是否缺失及内存占用情况 案例:找到小成本高口碑电影 思路:从最大的N个值中选取最小值 movie2....中的重复行。...与添加行的方法类似,需要多传一个axis参数 axis的默认值是index 按行添加 向DataFrame添加一列,不需要调用函数,通过dataframe['列名'] = ['值'] 即可 通过dataframe...Pandas可以通过pd.join命令组合数据,也可以通过pd.merge命令组合数据,merge更灵活,如果想依据行索引来合并DataFrame可以考虑使用join函数 how = ’left‘ 对应...方法 只能水平连接两个DataFrame对象 对齐是靠被调用的DataFrame的列或行索引和另一个DataFrame的列或行索引 默认是内连接(也可以设为左连接、外连接、右连接)
axis: axis参数默认为0('index'),按行删除,即删除有空值的行。将axis参数修改为1或‘columns’,则按列删除,即删除有空值的列。...在实际的应用中,一般不会按列删除,例如数据中的一列表示年龄,不能因为年龄有缺失值而删除所有年龄数据。 how: how参数默认为any,只要一行(或列)数据中有空值就会删除该行(或列)。...将how参数修改为all,则只有一行(或列)数据中全部都是空值才会删除该行(或列)。 thresh: 表示删除空值的界限,传入一个整数。...如果一行(或列)数据中少于thresh个非空值(non-NA values),则删除。也就是说,一行(或列)数据中至少要有thresh个非空值,否则删除。...subset: 删除空值时,只判断subset指定的列(或行)的子集,其他列(或行)中的空值忽略,不处理。当按行进行删除时,subset设置成列的子集,反之。
领取专属 10元无门槛券
手把手带您无忧上云