首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

蛋白质组学实验中的P与Q值

在蛋白质组学实验中,P值和Q值是两个常用的统计指标,用于评估差异表达蛋白质的可靠性和显著性。

  1. P值(P-value):P值是指在假设检验中,根据观察到的样本数据计算得出的一个概率值。它表示在原假设为真的情况下,观察到的样本数据或更极端情况出现的概率。P值越小,表示观察到的差异越显著,即越有可能拒绝原假设。通常,当P值小于设定的显著性水平(如0.05)时,我们会认为差异是显著的。
  2. Q值(Q-value):Q值是用于控制多重假设检验中的假阳性率(False Discovery Rate,FDR)的一种校正方法。在蛋白质组学实验中,由于同时检验了大量的蛋白质差异表达,存在大量的假阳性结果。Q值通过对P值进行多重假设检验校正,得到一个调整后的显著性水平。通常,我们会将Q值小于设定的阈值(如0.05)的差异表达蛋白质视为显著差异。

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云基因组学分析平台:提供基因组学数据分析的云端解决方案,包括蛋白质组学实验数据的处理和分析。详情请参考:腾讯云基因组学分析平台
  • 腾讯云人工智能平台:提供丰富的人工智能算法和工具,可用于蛋白质组学数据的深度学习和模式识别。详情请参考:腾讯云人工智能平台
  • 腾讯云数据库:提供高性能、可扩展的数据库服务,可用于存储和管理蛋白质组学实验数据。详情请参考:腾讯云数据库
  • 腾讯云容器服务:提供高性能、可弹性伸缩的容器化部署环境,可用于部署和运行蛋白质组学数据分析的应用程序。详情请参考:腾讯云容器服务

请注意,以上仅为腾讯云相关产品的示例,其他云计算品牌商也提供类似的产品和服务。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 高效预测几乎所有人类蛋白质结构,AlphaFold再登Nature,数据库全部免费开放

    转载自Science AI 作者:雪松、凯霞 这次,AlphaFold 的预测结果几乎覆盖了人类所有的蛋白质结构,而且将免费开放给公众。这将是科学界的一笔宝贵财富。 生命所必需的每一次基础生物学活动几乎都是由蛋白质带来的。蛋白质参与创建细胞和组织并保持着它们的形状;构成维持生命所需化学反应的催化酶;充当分子工厂、转运工具和马达;充当细胞通讯的信号和接收器等等。 蛋白质由很多氨基酸长链组成,通过折叠成精确的 3D 结构来完成无数的任务。这些结构控制着它们与其它分子互动的方式,决定了其功能以及它在疾病中的功

    03

    Nat. Commun | 预测RNA-蛋白质结合偏好的深度学习框架

    RNA与蛋白质之间的相互作用在转录后的调节中起重大作用,因此需对RNA-蛋白质(RBP)之间的结合进行预测,但是实验手段的应用难以广泛开展。结构生物学实验只能检测某一个特定RNA与蛋白间的相互作用,而不能提供统计意义上的结合偏好的信息。而assay的方法可以提供结合的亲和力,但是没有办法抓住具体的结构上的结合构象的差异和细节。基于计算的手段由于具有高通量高效率的优点,正受到越来越多的重视。传统的计算手段通过从蛋白质氨基酸序列抽取特征来训练机器学习模型,因此预测精度低,而且预测的分辨率也只能局限于某个氨基酸是否是RNA结合位点。

    06

    Nat. Biotechnol. | 用机器学习预测多肽质谱库

    本文介绍Max-Planck生物化学研究所计算系统生物化学研究组的Jürgen Cox近期发表在Nature Biotechnology的综述Prediction of peptide mass spectral libraries with machine learning。最近开发的机器学习方法用于识别复杂的质谱数据中的肽,是蛋白质组学的一个重大突破。长期以来的多肽识别方法,如搜索引擎和实验质谱库,正在被深度学习模型所取代,这些模型可以根据多肽的氨基酸序列来预测其碎片质谱。这些新方法,包括递归神经网络和卷积神经网络,使用预测的计算谱库而不是实验谱库,在分析蛋白质组学数据时达到更高的灵敏度或特异性。机器学习正在激发涉及大型搜索空间的应用,如免疫肽组学和蛋白质基因组学。该领域目前的挑战包括预测具有翻译后修饰的多肽和交联的多肽对的质谱。将基于机器学习的质谱预测渗透到搜索引擎中,以及针对不同肽类和测量条件的以质谱为中心的数据独立采集工作流程,将在未来几年继续推动蛋白质组学应用的灵敏度和动态范围。

    01

    Nat. Methods | 利用深度学习进行基于生物物理学和数据驱动的分子机制建模

    本文介绍由美国马萨诸塞州波士顿哈佛医学院系统生物学系系统药理学实验室的Mohammed AlQuraishi等人发表于Nature Methods 的研究成果:研究人员报道了可微程序与分子和细胞生物学结合产生的新兴门类:“可微生物学”。本文作者介绍了可微生物学的一些概念并作了两个案例说明,展示了如何将可微生物学应用于整合跨生物实验中产生的多模态数据,解决这一存在已久的问题将促进生物物理和功能基因组学等领域的发展。作者讨论了结合生物和化学知识的ML模型如何克服稀疏的、不完整的、有噪声的实验数据造成的限制。最后,作者总结了它面临的挑战以及它可能扩展的新领域,可微编程仍有很多可发挥的空间,它将继续影响科技的发展。

    02

    Nucleic Acids Res. | AlphaFold DB:大规模扩展蛋白质序列空间的结构覆盖范围

    今天向大家介绍DeepMind团队发表在Nucleic Acids Research上的一篇Breakthrough文章“AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models”。作者在文章中介绍了一种名为AlphaFold DB的蛋白质数据库(https://alphafold.ebi.ac.uk),它是一个可公开访问的高精度蛋白质结构预测数据库。在 DeepMind提出的AlphaFold v2.0模型的支持下,它使已知蛋白质序列空间的结构覆盖范围实现了前所未有的扩展。该数据库提供了可编程访问及交互式可视化功能,包括预测的原子坐标、每个残基和成对模型置信度的估计,以及预测的对齐误差。AlphaFold DB的初始版本包含21种模型生物蛋白质组中的360,000多个预测结构,很快将扩展到涵盖UniRef90数据集中的大部分代表性序列(超过1亿个)。

    02

    Nat. Biotechnol. | 一个综合的SARS-CoV-2-human蛋白-蛋白相互作用组

    今天给大家介绍的是美国基因组医学研究所,勒纳研究所,克利夫兰诊所及美国纽约州伊萨卡康奈尔大学威尔细胞与分子生物学研究所等机构在nature biotechnology上发表的文章《A comprehensive SARS-CoV-2–human protein–protein interactome reveals COVID-19 pathobiology and potential host herapeutic targets》,在文章中作者使用高通量酵母双杂交实验和质谱生成由739种高置信度二元和共复相互作用组成的一个综合SARS-CoV-2-human蛋白质-蛋白质相互作用组(PPI)网络,用于验证已知的宿主因子及揭示了新的宿主因子。并基于网络筛选了2900种FDA批准的药物,确定了23种与SARS-CoV-2宿主因素具有显著网络接近度的药物。该研究研究证明了网络系统生物学对理解人类-病毒相互作用的价值,并为进一步研究COVID-19治疗提供了成功的机会。

    02

    Nat. Methods | 张阳团队开发远超AlphaFold2精度的蛋白互作结构预测算法

    基因是构造生命的基本蓝图,而蛋白质则是生命功能的执行者和生命现象的体现者。细胞中的蛋白质主要是通过与细胞内其它蛋白质的相互作用来实现其绝大部分生物学功能。因此,蛋白质-蛋白质相互作用(简称“蛋白质互作”)在生命功能的实现以及生物的进化过程中都扮演极其重要的角色。例如,抗体和抗原蛋白相互作用可以帮助生命个体识别和抵御外界病原体的入侵;受体和配体蛋白相互作用可以触发细胞信号传导通路;酶蛋白和底物相互作用可以催化新陈代谢的进程等等。它们在生物功能上的这种特殊的重要性,也使得蛋白质互作成为许多现代药物设计的关键靶点。

    01

    ICLR2021 | 利用数据扩充提高蛋白质序列模型的通用性

    今天给大家介绍投稿在ICLR2021上的一项工作。由于蛋白质序列上的微小改变可能导致其功能上难以预测的变化,所以蛋白质序列往往无法使用类似于计算机视觉或自然语言处理中所使用的随机数据扩充方法。针对以上问题,作者从经验上探索了一组简单的字符串操作,当微调半监督蛋白质模型时,可使用这些操作来增加蛋白质序列数据。在TAPE baseline上的结果表明,对比学习微调方法优于mask token预测微调方法,随着数据扩充量的增加,对比学习方法的性能随之提高。当使用域驱动的转化以及将Transformer的注意力限制在蛋白质序列的随机采样子区域时,跨TAPE任务的结果最一致。在极少数情况下,破坏信息的扩充方式可以改善下游任务表现。

    04

    Nature Communications:主要精神和神经退行性疾病的共同机制

    几种常见的精神病和神经退行性疾病具有共同的流行病学风险; 然而,它们是否具有共同的病理生理学尚不清楚,是科研工作者的研究重点。作者使用25个全基因组关联研究 (GWAS)结果和LD得分回归,发现精神疾病和神经退行性疾病之间存在八种显著的遗传相关性。作者将GWAS结果与人脑转录组 (n = 888) 和蛋白质组 (n = 722) 进行整合,以鉴定顺式和跨蛋白以及与每种疾病中的多效性或因果(致病)作用一致的蛋白质,为简洁起见称为因果蛋白(致病蛋白),并在每个疾病组中都发现了许多独特且共享的因果蛋白。值得注意的是,神经退行性疾病病因蛋白的30% (42个中的13个) 与精神疾病共享。此外,作者发现精神和神经退行性因果蛋白之间的蛋白质-蛋白质相互作用比偶然预期的多2.6倍。发现的结果共同表明,这些精神和神经退行性疾病具有共同的遗传和分子病理生理学,这对早期治疗和治疗发展具有重要影响。

    02

    Nat.Commun.| 使用图卷积网络的基于结构的蛋白质功能预测

    今天给大家介绍的是Vladimir Gligorijević等人在nature communication上发表的文章《Structure-based protein function prediction using graph convolutional networks》。序列数据库中蛋白质数量的快速增加及其功能的多样性对自动功能预测的计算方法提出了挑战。作者提出了DeepFRI,一个利用从蛋白质语言模型和蛋白质结构中提取的序列特征来预测蛋白质功能的图卷积网络。它的性能优于当前领先的方法和基于序列的卷积神经网络,并可扩展到当前序列存储库的规模。使用同源性模型增强实验结构的训练集允许作者显著扩展预测函数的数量。DeepFRI具有显著的去噪能力,当实验结构被蛋白质模型取代时,性能只有轻微的下降。类激活图允许以前所未有的分辨率进行功能预测,允许在残基级别上进行特定位点的注释。作者通过注释来自PDB和SWISS-MODEL的结构,展示了此方法的实用性和高性能。

    04
    领券