首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

IEEE TNNLS|GAN的生成器反演

今天给大家介绍帝国理工学院的Antonia Creswell等人在IEEE Transactions on Neural Networks and Learning Systems上发表的文章” Inverting the Generator of a Generative Adversarial Network”。生成性抗网络(Generative Adversarial Network,GAN)能够生成新的数据样本。生成模型可以从选定的先验分布中提取的潜在样本来合成新的数据样本。经过训练,潜在空间会显示出有趣的特性,这些特性可能对下游任务(如分类或检索)有用。不幸的是,GAN没有提供“逆模型”,即从数据空间到潜在空间的映射,这使得很难推断给定数据样本的潜在表示。在这篇文章中,作者介绍了一种技术:反演(Inversion),使用反演技术,我们能够识别训练后的神经网络建模和量化神经网络性能的属性。

02

Stable Video Diffusion: 将潜在视频扩散模型扩展到大型数据集

在图像生成模型技术的推动下,视频生成模型在研究和应用领域取得了显著进展。这些模型通常通过从头开始训练或对预训练图像模型插入额外的时间层进行微调来实现。训练通常在混合的图像和视频数据集上进行。尽管视频建模的改进研究主要关注空间和时间层的排列方式,但先前的工作没有探究数据选择的影响。然而,训练数据分布对生成模型的影响是不可忽视的。此外,对于生成式图像建模,已经知道在大型和多样化的数据集上进行预训练,然后在小型但质量更高的数据集上进行微调,可以显著提高性能。然而,之前的视频建模方法往往借鉴了来自图像领域的技术,而对于数据和训练策略的影响,即在低分辨率视频上进行预训练再在高质量数据集上微调,还需要进一步研究。

01

R语言宏基因组学统计分析学习笔记(第三章-3)

早在1897年,皮尔逊就警告说,在器官测量中使用两个绝对测量值的比值,可能会形成“伪相关”。自1920s以来,地质学的研究人员已经知道,使用标准的统计方法来分析成分数据可能会使结果无法解释。Aitchison认识到关于组成成分的每一个陈述都可以用成分的比率来表述,并开发出一套基本原理、各种方法、操作和工具来进行成分数据分析。其中,对数比变换方法被地质学、生态学等领域的统计学家和研究人员广泛接受,因为通过对数比变换,可以消除组成数据的样本空间(单纯性)受约束问题,并将数据投影到多元空间中。因此,所有可用的标准多元技术都可以再次用于分析成分数据。

01

【数据科学】数据科学经验谈:这三点你在书里找不到

什么样的处理才算是正确的处理呢?为了目的不择手段?只要得到好的预测性能就万事大吉?事实确实如此,但是这么做的关键在于,你能确保未知数据也能有个不错的表现。就像我经常说的那样,你很容易就会受到它的蒙蔽,在分析训练结果的时候,轻易地就相信了你选择的方法。 以下三点很重要。 1.模型评价是关键 数据分析/机器学习/数据科学(或任何你能想到的领域)的主要目标,就是建立一个系统,要求它在预测未知数据上有良好的表现。区分监督学习(像分类)和无监督学习(如聚合)其实没有太大的意义,因为无论如何你总会找到办法来构建和设计你

010

“北大-鹏城-腾讯”新视角:从势能的角度探讨模型的可迁移性-ICCV2023开源

随着大规模数据集预训练模型的广泛应用,迁移学习已成为计算机视觉任务中的关键技术。但是,从大量的预训练模型库中为特定下游任务选择最优的预训练模型仍然是一个挑战。现有的方法主要依赖于编码的静态特征与任务标签之间的统计相关性来测量预训练模型的可迁移性,但它们忽略了微调过程中潜在的表示动力学的影响,导致结果不可靠,尤其是对于自监督模型。在本文中,我们从潜在能量的角度提出了一种新颖的方法——PED,来解决这些挑战。我们将迁移学习动力视为降低系统潜在能量的过程,并直接对影响微调动力学的相互作用力进行物理学建模。通过在物理驱动模型中捕获动态表示的运动来降低潜在能量,我们可以获得增强和更稳定的观测结果来估计可迁移性。在10个下游任务和12个自监督模型上的实验结果表明,我们的方法可以顺利集成到现有的优秀技术中,增强它们的性能,这揭示了它在模型选择任务中的有效性和发掘迁移学习机制的潜力。我们的代码将在https://github.com/lixiaotong97/PED上开源。

04
领券