首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Theano 中文文档 0.9 - 7.2.3 Theano中的导数

7.2.3 Theano中的导数 译者:Python 文档协作翻译小组,原文:Derivatives in Theano。...计算梯度 现在让我们使用Theano来完成一个稍微复杂的任务:创建一个函数,该函数计算相对于其参数x的某个表达式y的导数。为此,我们将使用宏T.grad。例如,我们可以计算 相对于 的梯度。...有关微分内部工作原理的其他信息,也可以在更高级的教程扩展Theano中找到。 计算Jacobian 在Theano的用语中,术语Jacobian表示函数相对于其输入的一阶偏导数的张量。...为了手动计算某些函数y相对于某个参数x的雅可比矩阵,我们需要使用scan。我们所做的是循环y中的条目,并计算y [i]相对于x的梯度。...原因是y_i将不再是x的函数,而y[i]仍然是。 计算Hessian 在Theano中,术语Hessian具有通常的数学概念:它是由函数的二阶偏导数组成的矩阵,该函数的输出为标量和输入为向量。

62130
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pytorch中张量的高级选择操作

    最后以表格的形式总结了这些函数及其区别。 torch.index_select torch.index_select 是 PyTorch 中用于按索引选择张量元素的函数。...它的作用是从输入张量中按照给定的索引值,选取对应的元素形成一个新的张量。它沿着一个维度选择元素,同时保持其他维度不变。也就是说:保留所有其他维度的元素,但在索引张量之后的目标维度中选择元素。...torch.gather torch.gather 是 PyTorch 中用于按照指定索引从输入张量中收集值的函数。...它允许你根据指定的索引从输入张量中取出对应位置的元素,并组成一个新的张量。...torch.take torch.take 是 PyTorch 中用于从输入张量中按照给定索引取值的函数。

    20910

    张量的基础操作

    这通常涉及到将一个张量的数据类型转换为另一个数据类型,以便满足特定的计算需求或优化内存使用。 TensorFlow 在TensorFlow中,你可以使用tf.cast函数来转换张量的类型。...tf.cast函数接受两个参数:要转换的张量和目标数据类型。...torch.stack() 函数用于在新的维度上堆叠张量。...在深度学习框架中,张量索引操作通常用于访问和修改张量中的数据。以下是一些基本的张量索引操作: 基础索引:可以通过指定张量的维度和对应的索引值来获取张量中的特定元素。...多维索引:对于多维张量,可以通过指定多个维度的索引来访问数据,例如 tensor[i, j, k] 将访问三维张量中第 i 层、第 j 行、第 k 列的元素。

    19010

    张量的结构操作

    前面几章我们对低阶API已经有了一个整体的认识,本章我们将重点详细介绍张量操作和动态计算图。 张量的操作主要包括张量的结构操作和张量的数学运算。...张量结构操作诸如:张量创建,索引切片,维度变换,合并分割。 张量数学运算主要有:标量运算,向量运算,矩阵运算。另外我们会介绍张量运算的广播机制。...动态计算图我们将主要介绍动态计算图的特性,计算图中的Function,计算图与反向传播。 本篇我们介绍张量的结构操作。 一,创建张量 张量创建的许多方法和numpy中创建array的方法很像。...(布尔索引) #结果是1维张量 g = torch.masked_select(scores,scores>=80) print(g) 以上这些方法仅能提取张量的部分元素值,但不能更改张量的部分元素值得到新的张量...如果要通过修改张量的部分元素值得到新的张量,可以使用torch.where,torch.index_fill 和 torch.masked_fill torch.where可以理解为if的张量版本。

    2K20

    PyTorch中张量的创建方法的选择 | Pytorch系列(五)

    在这篇文章中,我们将仔细研究将数据转换成PyTorch张量的主要方法之间的区别。 ? 在这篇文章的最后,我们将知道主要选项之间的区别,以及应该使用哪些选项和何时使用。言归正传,我们开始吧。...在上一篇文章中《Pytorch中张量讲解 | Pytorch系列(四)》,我们了解了如何使用Python列表、序列和NumPy ndarrays等数据在PyTorch中创建张量。...你可以将torch.tensor()函数看作是在给定一些参数输入的情况下构建张量的工厂。工厂函数是用于创建对象的软件设计模式。 如果您想了解更多关于它的信息,请点击这里。...二、Default dtype Vs Inferred dtype 好了,在我们把torch.Tensor()构造函数从我们的列表中删除之前,让我们复习一下打印出来的张量输出的不同之处。...这是torch.Tensor() 构造函数缺少配置选项的示例。这也是使用 torch.tensor() 工厂函数创建张量的原因之一。 让我们看一下这些替代创建方法之间的最后隐藏的区别。

    2K41

    pytorch张量的创建

    张量的创建 张量(Tensors)类似于NumPy的ndarrays ,但张量可以在GPU上进行计算。从本质上来说,PyTorch是一个处理张量的库。一个张量是一个数字、向量、矩阵或任何n维数组。...size: 张量的形状 out: 输出的张量 layout: 内存中布局形式 device: 所在设备 requires_grad: 是否需要梯度 torch.zeros(2, 3) tensor...input: 创建与input同形状的全0张量 dtype: 数据类型 layout: 内存中布局形式 input = torch.empty(2, 3) torch.zeros_like(input...size: 张量的形状 dtype: 数据类型 layout: 内存中布局形式 device: 所在设备 requires_grad: 是否需要梯度 input = torch.empty(2...size: 张量的形状 fill_value: 张量的值 torch.arange(start=0, end. step=1, out=None, dtype=None, layout=torch.strided

    11210

    Pytorch 中的 5 个非常有用的张量操作

    2. permute() 这个函数返回一个张量的视图,原始张量的维数根据我们的选择而改变。例如,如果原来的维数是[1,2,3],我们可以将它改为[3,2,1]。该函数以所需的维数顺序作为参数。...当我们想要对不同维数的张量进行重新排序,或者用不同阶数的矩阵进行矩阵乘法时,可以使用这个函数。 3. tolist() 这个函数以Python数字、列表或嵌套列表的形式返回张量。...4. narrow() 这个函数返回一个新的张量,这个张量是原来张量的缩小版。这个函数的参数是输入张量、要缩小的维数、起始索引和新张量沿该维数的长度。...5. where() 这个函数返回一个新的张量,其值在每个索引处都根据给定条件改变。这个函数的参数有:条件,第一个张量和第二个张量。...这里,它检查张量a的值是否是偶数。如果是,则用张量b中的值替换,b中的值都是0,否则还是和原来一样。 此函数可用于设定阈值。如果张量中的值大于或小于某一数值,它们可以很容易地被替换。 - EOF -

    2.4K41

    C语言函数中链式访问的一个有趣的题目

    C语言函数中链式反应访问的一个有趣的小例题 推荐哔哩哔哩比特鹏哥的这个视频——讲解链接 首先 什么是函数链式访问         把一个函数的返回值作为另外一个函数的参数。...("%d\n", len); //输出 3 //一句话搞定 //这就是链式访问,像一个链条一样将函数有机的串在了一起 printf("%d\n", strlen("abc")); /.../输出还是3 } 一个有趣的问题 下面这段代码最后输出的结果是什么 #include int main(void) { printf("%d", printf("%d", printf...("%d", 43))); return 0; } 开始我认为结果就是43,但是最后的答案是4321....这里要补充一点小知识: 1.printf("",)括号中的内容依次是,格式化字符串-输出地址 2.printf()的返回值就是打印在屏幕上的字符个数 这样这串代码输出4321就可以解释了 首先是这样

    37810

    张量的数学运算

    前面几章我们对低阶API已经有了一个整体的认识,本章我们将重点详细介绍张量操作和动态计算图。 张量的操作主要包括张量的结构操作和张量的数学运算。...一,标量运算 张量的数学运算符可以分为标量运算符、向量运算符、以及矩阵运算符。 加减乘除乘方,以及三角函数,指数,对数等常见函数,逻辑比较运算符等都是标量运算符。...numpy是一样的: 1、如果张量的维度不同,将维度较小的张量进行扩展,直到两个张量的维度都一样。...2、如果两个张量在某个维度上的长度是相同的,或者其中一个张量在该维度上的长度为1,那么我们就说这两个张量在该维度上是相容的。 3、如果两个张量在所有维度上都是相容的,它们就能使用广播。...4、广播之后,每个维度的长度将取两个张量在该维度长度的较大值。 5、在任何一个维度上,如果一个张量的长度为1,另一个张量长度大于1,那么在该维度上,就好像是对第一个张量进行了复制。

    2.8K20

    MindSpore自定义算子中的张量维度问题

    技术背景 在前面的几篇博客中,我们介绍了MindSpore框架下使用CUDA来定义本地算子的基本方法,以及配合反向传播函数的使用,这里主要探讨一下MindSpore框架对于CUDA本地算子的输入输出的规范化形式...t **shapes, const char **dtypes, void *stream, void *extra) 也就是说,我们在一个.cu文件中按照这种形式写好函数接口...这里我们用一个二维的张量来做一个测试,CUDA代码保持不动,只修改Python代码中的输入: import os import numpy as np import mindspore as ms from...,我们在CUDA的打印函数中设置的打印输出大小是输入张量的第一个维度的大小,我们给的是一个(4,3)大小的张量,因此会顺序打印4个数出来。...atomicAdd函数,把输入张量的所有元素做一个求和,这样输出的张量的shape只有[1],对应的Python调用形式也要做一定的调整: import os import numpy as np import

    10310

    知识图谱中的链接预测——张量分解篇

    基于张量分解的模型共学习三个函数:1.实体表示函数,通常将实体表示为向量;2.关系表示函数,通常将关系表示为矩阵;3.评分函数,根据实体和关系的表示得到三维二值张量中某个值的预测值。...使用f作为关系表示函数,输入为三元组中实体和关系的表示,输出为该三元组的预测值,A_ikj=f(e_(i,h),M_k,e_(j,t))。...对关系表示函数进行修改,将关系表示为对角矩阵,EMBR(k)=Ʌ_k ,最终得到的张量分解的表达式为A_ijk=e_i^T Ʌ_k e_j。...相反的,对于一个知识图谱中存在的多种关系,Tucker采用三维张量分解的算法直接分解为一个核张量(三维张量)和三个二维张量在其对应维度的乘积。...即除了需要训练实体表示函数、关系表示函数和评分函数,Tucker模型需要训练一个针对整个知识图谱的核张量。

    1.5K20

    知识图谱中的链接预测——张量分解篇

    基于张量分解的模型共学习三个函数:1.实体表示函数,通常将实体表示为向量;2.关系表示函数,通常将关系表示为矩阵;3.评分函数,根据实体和关系的表示得到三维二值张量中某个值的预测值。...使用f作为关系表示函数,输入为三元组中实体和关系的表示,输出为该三元组的预测值,A_ikj=f(e_(i,h),M_k,e_(j,t))。...RESCAL[1]模型年发表于2011年ICML,张量计算首先提出基于张量分解的方法对关系数据建模,完成知识图谱中链接预测的任务。...相反的,对于一个知识图谱中存在的多种关系,Tucker采用三维张量分解的算法直接分解为一个核张量(三维张量)和三个二维张量在其对应维度的乘积。...即除了需要训练实体表示函数、关系表示函数和评分函数,Tucker模型需要训练一个针对整个知识图谱的核张量。

    3.7K40

    多维张量的几何理解

    Tensor是Tensorflow中最基础的数据结构,常常翻译为张量,可以理解为n维数组或矩阵,相关函数:constant(value, dtype=None, shape=None, name='Const...一维张量没有行和列的概念,只有长度的概念。上述的const1就是长度为4的一维张量,或者称为向量。 上面的图仅为示意,代表一维张量只有axis=0这个方向,并不是指这是一个4行的向量。...上面的例子就是4维张量。 以三维以上的张量为例: 从左边开始数连续的[,最后一个[对应的]中一共两个元素,分别为1, 2,说明深度为2。...小结:shape属性中的元素大于等于3时,可以用3维空间来理解。...shape中的属性分别与axis=0,axis=1、axis=2、axis=3……对应,以此类推。当维度超过3时,上图几何中的坐标系表示就已经错误了。但是对于理解多维是有帮助的。

    2K30

    理解python函数的参数访问方式

    在《简书》上看到了一个讨论python函数参数传递的文章,仔细读了几遍,有些不是很明白的地方,于是有了此文,欢迎阅读讨论,如有错误,也欢迎指正: python中"一切皆对象"的概念想必你一定知道;对于python...中函数的参数,虽然在函数定义的时候无法指定对象的类型,但是调用该函数的时候,也并不是什么对象都可以传入的,比如我们查看sum的帮助文档,其描述了可接受的第一个参数是可迭代对象(包括迭代器,list,tuple...那么函数究竟是如何访问参数的呢?...参数和函数都是对象,函数对象内还包含了函数内部变量,我把这些内部变量理解为“函数内部对象”, 相对于“函数内部对象”,我认为 函数参数 属于”函数需要访问的外部对象“, 这里简称为“外部对象”....从函数定义时的参数是否有默认值: 如果指定了默认值,这时候,函数定义完成的时候,建立了两个“外部对象”:其中一个外部对象对应参数的默认值, 这个外部对象一直都存在,但是只有通过函数才可以访问到;而建立的另外一个

    66430
    领券