首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

颤振中的非连续时间序列

是指在颤振现象中,所观测到的时间序列数据是非连续的。颤振是一种机械系统中的自激振动现象,其特点是振幅不断增大,最终导致系统的破坏。

在非连续时间序列中,数据点之间存在间隔,这是由于颤振现象的特性决定的。这种非连续性使得对颤振进行分析和预测变得更加困难,因为传统的时间序列分析方法通常假设数据点之间是连续的。

颤振中的非连续时间序列在工程领域中具有重要的应用价值。通过对颤振中的非连续时间序列进行分析,可以帮助工程师了解和预测机械系统的振动行为,从而采取相应的措施来避免颤振的发生,提高系统的可靠性和安全性。

腾讯云提供了一系列与颤振中的非连续时间序列相关的产品和服务,包括:

  1. 云服务器(ECS):提供可靠的计算能力,用于处理和分析颤振中的非连续时间序列数据。链接地址:https://cloud.tencent.com/product/cvm
  2. 云数据库(CDB):提供高性能、可扩展的数据库服务,用于存储和管理颤振中的非连续时间序列数据。链接地址:https://cloud.tencent.com/product/cdb
  3. 人工智能(AI):腾讯云的人工智能服务可以应用于颤振中的非连续时间序列数据的分析和预测,提供更准确的结果和决策支持。链接地址:https://cloud.tencent.com/product/ai
  4. 物联网(IoT):腾讯云的物联网平台可以用于连接和管理与颤振中的非连续时间序列相关的传感器和设备,实现数据的采集和监控。链接地址:https://cloud.tencent.com/product/iotexplorer

总结:颤振中的非连续时间序列是指在颤振现象中观测到的时间序列数据是非连续的。腾讯云提供了一系列与颤振中的非连续时间序列相关的产品和服务,包括云服务器、云数据库、人工智能和物联网平台等,用于处理、存储、分析和预测颤振中的非连续时间序列数据。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

案例:数控机床主轴校准与颤振监测系统

提高生产数量与产品质量始终是制造业努力追求的目标,工业4.0更勾勒出智能制造的美好愿景,促使被制造业视为是重要生产设备的CNC工具机(数控机床)也得因应这样的趋势不断地精益求精。而数控机床制造商在积极改善自家机器性能并提升加工精度以符合客户需求的过程中,机器校准正确与否是影响加工精度的重要因素之一。但一直以来制造业都是靠累积多年经验的老师傅来进行机器校准,工厂每日必须先以这种传统作法来检查设备才能正式开工;如果该厂需要制造的产品种类较多,每一次产线调整时还得再次为机器重新设定与校准。如此不科学的作业模式既繁琐又费时,一旦作业程序有所疏失就会发生加工精度失准的问题。

04

华中科技大学伍冬睿教授团队:生理计算中的对抗攻击与防御综述

生理计算使用人类的生理数据作为系统的实时输入。其包括或者与脑机接口、情感计算、自适应自动化、健康信息学以及基于生理信号的生物识别等领域高度重合。生理计算增加了从用户到计算机的通信带宽,但也易受各种类型的对抗攻击,其中攻击者故意操纵训练和/或测试样例来劫持机器学习算法的输出,可能导致用户困惑、受挫、受伤甚至死亡。然而,生理计算系统的脆弱性没有得到足够的重视,并且学界目前不存在针对生理计算领域的对抗攻击的综述。本文系统性综述了生理计算主要研究领域、不同类型的对抗攻击、其在生理计算上的应用以及相应的防御措施,从而填补了这一空白。希望本综述能吸引更多关于生理计算系统脆弱性的研究兴趣,更重要的是,能让更多人关注并投入使生理计算系统更加安全的防御策略的研究。

02

时间序列图神经网络最新综述(GNN4TS)

时间序列是用于记录动态系统测量结果的主要数据类型,并由物理传感器和在线过程(虚拟传感器)大量生成。因此,时间序列分析对于发掘可用数据中隐含的信息丰富性至关重要。随着图神经网络(GNNs)的最近进步,基于GNN的时间序列分析方法的研究有所增加。这些方法可以明确地模拟时间和变量之间的关系,这是传统的和其他基于深度神经网络的方法难以做到的。在这次综述中,我们对图神经网络进行了全面的时间序列分析(GNN4TS),包括四个基本维度:预测、分类、异常检测和插补。我们的目标是指导设计师和实践者理解,构建应用,并推进GNN4TS的研究。首先,我们提供了一个全面的任务导向的GNN4TS分类。然后,我们介绍并讨论代表性的研究工作,最后讨论GNN4TS的主流应用。关于潜在的未来研究方向的全面讨论完整了这次综述。这次研查是首次汇集了大量关于基于GNN的时间序列研究的知识,突出了图神经网络用于时间序列分析的基础、实际应用和机会。推荐阅读:深度时间序列的综述

04

GNN如何建模时间序列?

时间序列是用于记录动态系统测量结果的主要数据类型,并由物理传感器和在线过程(虚拟传感器)大量生成。因此,时间序列分析对于发掘可用数据中隐含的信息丰富性至关重要。随着图神经网络(GNNs)的最近进步,基于GNN的时间序列分析方法的研究有所增加。这些方法可以明确地模拟时间和变量之间的关系,这是传统的和其他基于深度神经网络的方法难以做到的。在这次综述中,我们对图神经网络进行了全面的时间序列分析(GNN4TS),包括四个基本维度:预测、分类、异常检测和插补。我们的目标是指导设计师和实践者理解,构建应用,并推进GNN4TS的研究。首先,我们提供了一个全面的任务导向的GNN4TS分类。然后,我们介绍并讨论代表性的研究工作,最后讨论GNN4TS的主流应用。关于潜在的未来研究方向的全面讨论完整了这次综述。这次研查是首次汇集了大量关于基于GNN的时间序列研究的知识,突出了图神经网络用于时间序列分析的基础、实际应用和机会。

05

PNAS:描绘自杀想法的时间尺度

本研究旨在利用实时监测数据和多种不同的分析方法,确定自杀思维的时间尺度。参与者是105名过去一周有自杀念头的成年人,他们完成了一项为期42天的实时监测研究(观察总数=20,255)。参与者完成了两种形式的实时评估:传统的实时评估(每天间隔数小时)和高频评估(间隔10分钟超过1小时)。我们发现自杀想法变化很快。描述性统计和马尔可夫转换模型都表明,自杀念头的升高状态平均持续1至3小时。个体在报告自杀念头升高的频率和持续时间上表现出异质性,我们的分析表明,自杀念头的不同方面在不同的时间尺度上运作。连续时间自回归模型表明,当前的自杀意图可以预测未来2 - 3小时的自杀意图水平,而当前的自杀愿望可以预测未来20小时的自杀愿望水平。多个模型发现,自杀意图升高的平均持续时间比自杀愿望升高的持续时间短。最后,在统计建模的基础上,关于自杀思想的个人动态的推断显示依赖于数据采样的频率。例如,传统的实时评估估计自杀欲望的严重自杀状态持续时间为9.5小时,而高频评估将估计持续时间移至1.4小时。

03

​万字综述 | 图神经网络在时间序列中的应用:预测、分类、填补和异常检测

时间序列是记录动态系统测量值的主要数据类型,由物理传感器和在线过程(虚拟传感器)大量生成。因此,时间序列分析对于揭示可用数据中隐含的信息财富至关重要。随着图神经网络(GNNs)的最新进展,基于GNN的时间序列分析方法大幅增加。这些方法可以明确地建模时序和变量间的关系,而传统的和其他基于深度神经网络的方法则难以做到。在这项调查中,我们对图神经网络在时间序列分析中的应用进行了全面回顾(GNN4TS),涵盖了四个基本维度:预测、分类、异常检测和填补。我们的目标是指导设计师和从业者了解、构建应用程序,并推进GNN4TS的研究。首先,我们提供了一个全面的面向任务的GNN4TS分类法。然后,我们介绍和讨论代表性研究成果,并介绍GNN4TS的主流应用。最后,我们全面讨论了潜在的未来研究方向。这项调查首次汇集了大量关于基于GNN的时间序列研究的知识,突出了图神经网络在时间序列分析中的基础、实际应用和机遇。

04
领券