首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas数据聚合:groupby与agg

基础概念 groupby 方法 groupby是Pandas中最常用的分组工具之一。它允许我们将DataFrame按照一个或多个列进行分组,从而可以对每个分组执行各种聚合操作。...它可以接受多种类型的参数,如字符串表示的函数名、自定义函数、字典等。通过agg,我们可以一次性对多个列应用不同的聚合函数,极大地提高了数据处理的灵活性和效率。...这在实际应用中非常有用,例如统计各部门员工的平均工资和最大工作经验。同样使用groupby和agg方法,只需传入一个包含多个列名的列表即可。 常见问题 优先级设定:明确各列之间的优先关系非常重要。...通常按照从高到低的重要性依次列出列名。 不同类型组合:当涉及不同数据类型的列一起聚合时(如数字与日期),应确保逻辑上的合理性。 性能考虑:随着参与聚合的列数增加,计算量也会相应增大。...自定义函数需要接收一个Series作为输入,并返回一个标量值。 多个聚合函数 有时我们需要对同一列应用多个聚合函数。agg允许我们通过传递一个包含多个函数的列表来实现这一点。

41710
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    《Python for Excel》读书笔记连载12:使用pandas进行数据分析之理解数据

    引言:本文为《Python for Excel》中第5章Chapter 5:Data Analysis with pandas的部分内容,主要讲解了pandas如何对数据进行描述性统计,并讲解了将数据聚合到子集的两种方法...:groupby方法和pivot_table函数。...本节首先介绍pandas的工作原理,然后介绍将数据聚合到子集的两种方法:groupby方法和pivot_table函数。...为此,首先按洲对行进行分组,然后应用mean方法,该方法将计算每组的均值,自动排除所有非数字列: 如果包含多个列,则生成的数据框架将具有层次索引,即我们前面遇到的多重索引: 可以使用pandas提供的大多数描述性统计信息...它们引入了第二个维度,可以从不同的角度查看数据。pandas还有一个数据透视表功能,将在下面介绍。

    4.3K30

    数智洞见 | 你的双11优惠券领了吗?基于算法的优惠券发放

    通过算法模型,提升营销准确率 ——以某个面包店为例 1.业务目标 根据某面包店历史6个月的用户交易记录,通过RFM模型对用户分群,并建立模型预测用户的购买概率,实现对不同用户群不同购买概率的用户实行不同的发券策略...)进行groupby,并对transcation(订单号)求nunique,得到每个用户的历史交易次数; · 聚合函数_M:基于6个月交易数据,对user_id(用户id )进行groupby,并对price...(商品价格)求sum,得到每个用户的历史交易总金额 · 聚合函数_R:基于6个月交易数据,对user_id(用户id )进行groupby,并对date(交易日期)取最大值,取得每个用户最后一次交易时间...7)输出发券用户列表 · Python脚本_目标用户:将KMeans聚类模型划分出属于“1”类别(重要价值客户:购买金额高、购买频率高、购买时间近),且XGB分类模型预测出来的今天不会购买的用户筛选出来...算法挖掘项目持续深耕数据智能化应用领域,目前已交付金融、政府、制造、地产等多个行业,感兴趣的小伙伴欢迎联系。

    1.7K30

    小蛇学python(18)pandas的数据聚合与分组计算

    对数据集进行分组并对各组应用一个函数,这是数据分析工作的重要环节。在将数据集准备好之后,通常的任务就是计算分组统计或生成透视表。...image.png 你一定注意到,在执行上面一行代码时,结果中没有key2列,这是因为该列的内容不是数值,俗称麻烦列,所以被从结果中排除了。...image.png 以下是按由多个键值构成元组的分组情况 ? image.png 通过这两个操作分析得知,第一行打印出来的是分组所根据的键值,紧接是按照此分组键值或者键值对得到的分组。...image.png 还有describe方法,严格来讲它不是聚类运算,它很好的描述了一个数据集的分组分布情况。 ? image.png 总结一下常用的分组聚类函数。...image.png 经过以上操作,我们可以看出来,凡是key是按照one分组的,如今在people列表里都变成了one里的平均值。这时候我们再自定义函数。 ?

    2.4K20

    Pandas常用的数据处理方法

    对于层次化索引的数据,我们必须以列表的形式指明用作合并键的多个列: lefth = pd.DataFrame({'key1':['Ohio','Ohio','Ohio','Nevada','Nevada...如果希望对不同的值进行不同的替换,传入一个由替换关系组成的列表或者字典即可: data = pd.Series([1,-999,2,-999,-1000,3]) data.replace(-999,np.nan...groupby默认是在axis=0上分组的,不过我们也可以在axis=1上分组,比如根据列的数据类型进行分组: for name,group in df.groupby(df.dtypes,axis=1...方法是apply,apply将会待处理的对象拆分成多个片段,然后对各片段调用传入的函数,最后尝试将各片段组合到一起. def top(df,n=5,column='tip_pct'): return...4.3 数据透视表 透视表是各种电子表格程序和其他数据分析软件中一种常见的数据汇总工具,它根据一个或多个键对数据进行聚合,并根据行和列伤的分组键将数据分配到各个矩形区域中。

    8.4K90

    python数据分析——数据分类汇总与统计

    并且一次应用多个函数。 关键技术:对于自定义或者自带的函数都可以用agg传入,一次应用多个函数。传入函数组成的list。所有的列都会应用这组函数。...使用read_csv导入数据之后,我们添加了一个小费百分比的列tip_pct: 如果希望对不同的列使用不同的聚合函数,或一次应用多个函数,将通过下面的例来进行展示。...这里也可以传入带有自定义名称的一组元组: 假设你想要对一个列或不同的列应用不同的函数。...Apply函数会将待处理的对象拆分成多个片段,然后对各片段调用传入的函数,最后尝试将各片段组合到一起。 【例13】采用之前的小费数据集,根据分组选出最高的5个tip-pct值。...关键技术:假设你需要对不同的分组填充不同的值。可以将数据分组,并使用apply和一个能够对各数据块调用fillna的函数即可。

    82910

    Python常用小技巧总结

    others Python合并多个EXCEL工作表 pandas中Series和Dataframe数据类型互转 相同字段合并 Python小技巧 简单的表达式 列表推导式 交换变量 检查对象使用内存情况...=[True,False]) # 先按列col1升序排列,后按col2降序排列数据 df.groupby(col) # 返回⼀个按列col进⾏分组的Groupby对象 df.groupby([col1...,col2]) # 返回⼀个按多列进⾏分组的Groupby对象 df.groupby(col1)[col2].agg(mean) # 返回按列col1进⾏分组后,列col2的均值,agg可以接受列表参数...进⾏分组,计算col2的最⼤值和col3的最⼤值、最⼩值的数据透视表 df.groupby(col1).agg(np.mean) # 返回按列col1分组的所有列的均值,⽀持 df.groupby(..."]} df = pd.DataFrame(d) df customer sales 0 A 1000 1 B 950.5RMB 2 C $400 3 D $1250.75 sales列的数据类型不同意

    9.4K20

    python数据分析——数据分类汇总与统计

    下面是一些常见的使用Groupby的操作: 分组操作:通过指定一个或多个列名,将数据集分成不同的组。例如,可以将一个销售数据集按照不同的产品进行分组。...使用read_csv导入数据之后,我们添加了一个小费百分比的列tip_pct: 如果希望对不同的列使用不同的聚合函数,或一次应用多个函数,将通过下面的例来进行展示。...Apply函数会将待处理的对象拆分成多个片段,然后对各片段调用传入的函数,最后尝试将各片段组合到一起。 示例一 【例13】采用之前的小费数据集,根据分组选出最高的5个tip-pct值。...关键技术:假设你需要对不同的分组填充不同的值。可以将数据分组,并使用apply和一个能够对各数据块调用fillna的函数即可。...可以是单个列名、多个列名组成的列表或者数组,表示数据透视后的行的唯一标识。 columns:指定数据透视后的列索引。可以是单个列名、多个列名组成的列表或者数组,表示数据透视后的列的唯一标识。

    7510

    再见了!Pandas!!

    查看数据基本信息 df.info() 使用方式: 提供DataFrame的基本信息,包括每列的非空值数量和数据类型。 示例: 查看数据信息。 df.info() 5....选择多列 df[['Column1', 'Column2']] 使用方式: 通过列名列表选择DataFrame中的多列。 示例: 选择“Name”和“Age”列。...AgeGroup'] = pd.cut(df['Age'], bins=[20, 30, 40, 50], labels=['20-30', '30-40', '40-50']) 使用方式: 使用cut函数将数值列分成不同的箱子...使用astype进行数据类型转换 df['NewColumn'] = df['Column'].astype(float) 使用方式: 使用astype将列的数据类型转换为指定类型。...使用explode展开列表 df.explode('ListColumn') 使用方式: 使用explode展开包含列表的列。 示例: 展开“Hobbies”列的列表。

    16910

    50个超强的Pandas操作 !!

    查看数据基本信息 df.info() 使用方式: 提供DataFrame的基本信息,包括每列的非空值数量和数据类型。 示例: 查看数据信息。 df.info() 5....AgeGroup'] = pd.cut(df['Age'], bins=[20, 30, 40, 50], labels=['20-30', '30-40', '40-50']) 使用方式: 使用cut函数将数值列分成不同的箱子...使用astype进行数据类型转换 df['NewColumn'] = df['Column'].astype(float) 使用方式: 使用astype将列的数据类型转换为指定类型。...使用explode展开列表 df.explode('ListColumn') 使用方式: 使用explode展开包含列表的列。 示例: 展开“Hobbies”列的列表。...使用agg进行多个聚合操作 df.groupby('GroupColumn').agg({'Column1': 'mean', 'Column2': ['min', 'max']}) 使用方式: 使用agg

    59510

    groupby函数详解

    1 groupby()核心用法 (1)根据DataFrame本身的某一列或多列内容进行分组聚合,(a)若按某一列聚合,则新DataFrame将根据某一列的内容分为不同的维度进行拆解,同时将同一维度的再进行聚合...(2)groupby(),根据分组键的不同,有以下4种聚合方法: 分组键为Series (a)使用原df的子列作为Series df.groupby([ df[‘key1’], df[‘key2’]...) 按key1、key2进行分组,并计算data1列的平均值,聚合表不堆叠 #将数据从“花括号”格式转为“表格”格式,unstack即“不要堆叠” df2=df['data1'].groupby([df...,根据dtypes对列进行分组,此时,需指定axis=1,否则,groupby默认根据axis=0进行分组,而行数据由于类型不统一,故无法根据dtypes对列进行分组 #df.dtypes用于确定df的数据类型...、字典、Series组合作为分组键,进行聚合 key_list=['one','one','one','two','two'] #自定义列表,默认列表的字符串顺序和df的列顺序一致 people.groupby

    3.8K11

    pandas技巧4

    pd.ExcelWriter('test.xlsx',index=False) # 然后调用df1.to_excel(writer,sheet_name='单位') 和 writer.save(),将多个数据帧写入同一个工作簿的多个...df.info() # 查看索引、数据类型和内存信息 df.columns() # 查看字段(首行)名称 df.describe() # 查看数值型列的汇总统计 s.value_counts(dropna...() # 检查DataFrame对象中的空值,并返回一个Boolean数组 pd.notnull() # 检查DataFrame对象中的非空值,并返回一个Boolean数组 df.dropna() #...([col1,col2], ascending=[True,False]) #先按列col1升序排列,后按col2降序排列数据 df.groupby(col) # 返回一个按列col进行分组的Groupby...对象 df.groupby([col1,col2]) # 返回一个按多列进行分组的Groupby对象 df.groupby(col1)[col2].agg(mean) # 返回按列col1进行分组后,列

    3.4K20

    【小白必看】Python爬虫数据处理与可视化

    datas 使用pandas.DataFrame()方法将二维列表转换为DataFrame对象df,每列分别命名为'类型'、'书名'、'作者'、'字数'、'推荐' 将'推荐'列的数据类型转换为整型 数据统计与分组...类型'列进行分组,并使用count()方法统计每个分组的数量 数据可视化 font_path = 'caisemenghuanjingyu.ttf' # 替换为自定义字体文件的路径 custom_font...,并创建FontProperties对象custom_font 使用hist()方法绘制'类型'列的直方图 使用xlabel()方法设置x轴标签,并使用自定义字体 使用show()方法显示图形 数据筛选与排序...authors, counts, nums): # 使用zip()函数将多个列表按元素进行配对 datas.append([t, name, author, count[:-1], num...('int') # 将推荐列的数据类型转换为整型 df.describe() # 使用describe()方法获取数据的统计描述信息 df.groupby('类型').count() # 使用groupby

    18310

    总结了67个pandas函数,完美解决数据处理,拿来即用!

    、数据类型和内存信息 df.columns() # 查看字段(⾸⾏)名称 df.describe() # 查看数值型列的汇总统计 s.value_counts(dropna=False) # 查看...() # 检查DataFrame对象中的⾮空值,并返回⼀个Boolean数组 df.dropna() # 删除所有包含空值的⾏ df.dropna(axis=1) # 删除所有包含空值的列 df.dropna...col2降序排列数据 df.groupby(col) # 返回⼀个按列col进⾏分组的Groupby对象 df.groupby([col1,col2]) # 返回⼀个按多列进⾏分组的Groupby对象...df.groupby(col1)[col2].agg(mean) # 返回按列col1进⾏分组后,列col2的均值,agg可以接受列表参数,agg([len,np.mean]) df.pivot_table...、最⼩值的数据透视表 df.groupby(col1).agg(np.mean) # 返回按列col1分组的所有列的均值,⽀持 df.groupby(col1).col2.agg(['min','max

    3.5K30

    数据导入与预处理-第6章-02数据变换

    基于列值重塑数据(生成一个“透视”表)。使用来自指定索引/列的唯一值来形成结果DataFrame的轴。此函数不支持数据聚合,多个值将导致列中的MultiIndex。...,这一过程中主要对各分组应用同一操作,并把操作后所得的结果整合到一起,生成一组新数据。...通过列表生成器 获取DataFrameGroupBy的数据: # 通过列表生成器 获取DataFrameGroupBy的数据 result = dict([x for x in groupby_obj...: # 根据列表对df_obj进行分组,列表中相同元素对应的行会归为一组 groupby_obj = df_obj.groupby(by=['A', 'A', 'B', 'B', 'A', 'B'])...,又接收自定义函数,甚至可以同时运用多个方法或函数,或给各列分配不同的方法或函数,能够对分组应用灵活的聚合操作。

    19.3K20

    (数据科学学习手札69)详解pandas中的map、apply、applymap、groupby、agg

    groupby()、agg()等方法展开详细介绍,并结合实际例子帮助大家更好地理解它们的使用技巧(本文使用到的所有代码及数据均保存在我的github仓库:https://github.com/CNFeffery...#查看各列数据类型、数据框行列数 print(data.dtypes) print() print(data.shape) ?...● 多列数据   apply()最特别的地方在于其可以同时处理多列数据,譬如这里我们编写一个使用到多列数据的函数用于拼成对于每一行描述性的话,并在apply()用lambda函数传递多个值进编写好的函数中...当变量为1个时传入名称字符串即可,当为多个时传入这些变量名称列表,DataFrame对象通过groupby()之后返回一个生成器,需要将其列表化才能得到需要的分组后的子集,如下面的示例: #按照年份和性别对婴儿姓名数据进行分组...值得注意的是,因为上例中对于不同变量的聚合方案不统一,所以会出现NaN的情况。

    5.1K60

    不再纠结,一文详解pandas中的map、apply、applymap、groupby、agg...

    本文就将针对pandas中的map()、apply()、applymap()、groupby()、agg()等方法展开详细介绍,并结合实际例子帮助大家更好地理解它们的使用技巧。...#查看各列数据类型、数据框行列数 print(data.dtypes) print() print(data.shape) ?...2.1 map() 类似Python内建的map()方法,pandas中的map()方法将函数、字典索引或是一些需要接受单个输入值的特别的对象与对应的单个列的每一个元素建立联系并串行得到结果。...当为多个时传入这些变量名称列表,DataFrame对象通过groupby()之后返回一个生成器,需要将其列表化才能得到需要的分组后的子集,如下面的示例: #按照年份和性别对婴儿姓名数据进行分组 groups...值得注意的是,因为上例中对于不同变量的聚合方案不统一,所以会出现NaN的情况。

    5K10
    领券