首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Keras中的计划采样

(Scheduled Sampling)是一种用于训练序列生成模型的技术。它主要用于解决序列生成模型中的“曝光偏差”问题,即训练过程中模型生成的序列与真实序列有所偏差的情况。

计划采样通过在训练过程中逐步增加使用模型自身生成的序列作为输入的概率,从而减小训练和推理过程之间的差异。它可以帮助模型更好地适应生成过程中的不确定性,提高生成质量。

优势:

  1. 解决“曝光偏差”问题:计划采样可以减小训练过程中模型生成序列与真实序列之间的差异,提高生成质量。
  2. 增加模型鲁棒性:通过引入随机性,计划采样可以使模型更好地适应生成过程中的不确定性,提高模型的鲁棒性。

应用场景: 计划采样主要应用于序列生成任务,例如机器翻译、文本生成、音乐生成等任务。在这些任务中,生成的序列需要与目标序列匹配,计划采样可以帮助提高生成质量。

推荐的腾讯云相关产品和产品介绍链接地址: 暂无推荐腾讯云相关产品。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

FOC控制中电流的采样

摘要 本篇笔记主要记录基于恩智浦MPC5744P的电机FOC控制中电流的采样。。 准备工作 安装S32DS for PA, 因为我们在S32DS下开发MPC5744P。...CTU事件触发ADC电流采样,在CTU的中断中去获取电流的ADC值,经过滤波后就可以做电流算法的闭环控制,这个芯片的ADC 有两种模式。...CTU操作的模式有触发模式和顺序模式。我们采用触发模式。 这里需要注意的是CTU的FIFO是不同的,0和1用来做快速采样,而2和3用来配置作为低速采样。...配置和开发 在S32DS开发环境中配置CTU和ADC, ADC配置 更多参数的配置请参考收据手册,这个需要认真阅读手册配置,可以参考例程。...但在电机控制中,为了达到同步和快速的电流采样,都是用触发同步采样,提供给算法实施闭环控制。有兴趣的可以多研究研究。

1.6K20
  • 双塔模型中的负采样

    作者:十方 推荐模型中双塔模型早已经普及.一个塔学用户表达.一个塔学item表达.很多双塔模型用各种各样的in-batch负采样策略.十方也是如此.往往使用比较大的batchsize,效果会比较好,但是由于内存限制...接下来就要说到cross-batch negative sampling,这个方法可以解决in-batch负采样中,存在batch size受到gpu显存大小,从而影响模型效果。...在训练过程中,我们往往认为过去训练过的mini-batches是无用废弃的,论文中则认为这些信息可以反复利用在当前负采样中因为encoder逐渐趋于稳定。...但是用历史的embedding会给梯度带来偏差,论文有证明这个偏差影响是很小的: 考虑到训练前期embedding波动较大,在warm up过程中先使用简单的in-batch内负采样,然后使用一个FIFO...CBNS的softmax如下式所示: 在每次迭代结束,都会把当前mini-batch的embedding和采样概率加入memory bank.在下次训练过程中,除了使用batch内负样本,同时也会从

    1.8K30

    keras中的损失函数

    损失函数是模型优化的目标,所以又叫目标函数、优化评分函数,在keras中,模型编译的参数loss指定了损失函数的类别,有两种指定方法: model.compile(loss='mean_squared_error...', optimizer='sgd') 或者 from keras import losses model.compile(loss=losses.mean_squared_error, optimizer...TensorFlow/Theano张量,其shape与y_true相同 实际的优化目标是所有数据点的输出数组的平均值。...(即,如果你有10个类,每个样本的目标值应该是一个10维的向量,这个向量除了表示类别的那个索引为1,其他均为0)。...为了将 整数目标值 转换为 分类目标值,你可以使用Keras实用函数to_categorical: from keras.utils.np_utils import to_categorical categorical_labels

    2.1K20

    keras中的数据集

    数据在深度学习中的重要性怎么说都不为过,无论是训练模型,还是性能调优,都离不开大量的数据。有人曾经断言中美在人工智能领域的竞赛,中国将胜出,其依据就是中国拥有更多的数据。...具体说来,keras.datasets模块包含了加载和获取流行的参考数据集的方法。...通过这些数据集接口,开发者不需要考虑数据集格式上的不同,全部由keras统一处理,下面就来看看keras中集成的数据集。...注意 keras.datasets模块包含了从网络下载数据的功能,下载后的数据集保存于 ~/.keras/datasets/ 目录。因为这些数据集来源各有不同,有些需要访问外国网站才能访问。...出于方便起见,单词根据数据集中的总体词频进行索引,这样整数“3”就是数据中第3个最频繁的单词的编码。

    1.8K30

    理解keras中的sequential模型

    keras中的主要数据结构是model(模型),它提供定义完整计算图的方法。通过将图层添加到现有模型/计算图,我们可以构建出复杂的神经网络。...Keras有两种不同的构建模型的方法: Sequential models Functional API 本文将要讨论的就是keras中的Sequential模型。...keras中的Sequential模型构建也包含这些步骤。 首先,网络的第一层是输入层,读取训练数据。...在keras中,Sequential模型的compile方法用来完成这一操作。例如,在下面的这一行代码中,我们使用’rmsprop’优化器,损失函数为’binary_crossentropy’。...总结 keras中的Sequential模型其实非常强大,而且接口简单易懂,大部分情况下,我们只需要使用Sequential模型即可满足需求。

    3.6K50

    处理Keras中的`Unknown layer`错误

    处理Keras中的Unknown layer错误:模型保存和加载 摘要 大家好,我是默语,擅长全栈开发、运维和人工智能技术。...在本篇博客中,我们将探讨如何处理Keras中的Unknown layer错误。这个错误通常出现在模型保存和加载过程中,了解并解决它对保持模型的可用性非常重要。...什么是Unknown layer错误 Unknown layer错误是Keras中的一种常见错误,通常在加载模型时出现。...A2:tf.keras是TensorFlow中的高级API,与独立的Keras库相比,具有更好的兼容性和集成性。...小结 在这篇文章中,我们详细探讨了Keras中的Unknown layer错误的成因,并提供了多种解决方案,包括注册自定义层、确保代码一致性、使用tf.keras API等。

    10210

    GNN教程:DGL框架中的采样模型!

    具体实现 在具体实现中,采样和计算是两个独立的模型,也就是说,我们通过采样获得子图,再将这个子图输入到标准的GCN模型中训练,这种解耦合的方式使模型变得非常灵活,因为我们可以对采样的方式进行定制,比如Stochastic...if i >= 32: break 上面的代码中,model由GCNsampling定义,虽然它的名字里有sampling,但这只是一个标准的GCN模型,其中没有任何和采样相关的内容...,和采样相关代码的定义在dgl.contrib.sampling.Neighborsampler中,使用图结构g初始化这个类,并且定义采样的邻居个数num_neighbors,它返回的nf即是NodeFlow...但是这样做在每一次采样中我们都有大量的邻居需要聚合,因此control variate和核心思路是缓存历史上计算过的聚合值 ,根据 和本次采样的邻居共同估计 ,同时在每一轮中更新 。...有两个细节没有介绍,第一、具体的采样方法,对于邻居的采样方法有很多种,除了最容易想到的重采样/负采样策略很多学者还提出了一些更加优秀的策略,之后我们会在"加速计算、近似方法"模块中详细讨论这些方法的原理

    1.9K10

    Keras中创建LSTM模型的步骤

    的复现与解读,新手博主,边学边记,以便后续温习,或者对他人有所帮助 概述 深度学习神经网络在 Python 中很容易使用 Keras 创建和评估,但您必须遵循严格的模型生命周期。...在这篇文章中,您将了解创建、训练和评估Keras中长期记忆(LSTM)循环神经网络的分步生命周期,以及如何使用训练有素的模型进行预测。...阅读这篇文章后,您将知道: 如何定义、编译、拟合和评估 Keras 中的 LSTM; 如何为回归和分类序列预测问题选择标准默认值。...这是 Keras 中的有用容器,因为传统上与图层关联的关注点也可以拆分并添加为单独的图层,清楚地显示它们在数据从输入到预测转换中的作用。...总结 在这篇文章中,您发现了使用 Keras 库的 LSTM 循环神经网络的 5 步生命周期。 具体来说,您了解到: 1、如何定义、编译、拟合、评估和预测 Keras 中的 LSTM 网络。

    3.7K10

    解决Keras中的InvalidArgumentError: Incompatible shapes

    解决Keras中的InvalidArgumentError: Incompatible shapes 摘要 大家好,我是默语,擅长全栈开发、运维和人工智能技术。...在这篇博客中,我将深入解析并解决Keras中的一个常见错误——InvalidArgumentError: Incompatible shapes。此错误通常出现在模型训练和数据处理阶段。...解决方案:确保所有预处理步骤中的数据形状一致。可以使用Keras的tf.keras.preprocessing模块进行数据预处理。...A2:可以使用Keras的tf.keras.layers模块中的Reshape层或Lambda层来调整数据形状。...我们详细探讨了Keras中的InvalidArgumentError: Incompatible shapes错误的成因,并提供了多种解决方案,包括确保输入数据形状一致、模型层之间的数据形状一致、数据预处理中的形状一致等

    10710

    tensorflow中keras.models()的使用总结

    初学者在调用keras时,不需要纠结于选择tf.keras还是直接import keras,现如今两者没有区别。从具体实现上来讲,Keras是TensorFlow的一个依赖(dependency)。...但,从设计上希望用户只透过TensorFlow来使用,即tf.keras。 所以在此主要记录一下tf.keras.models的使用。...由于Layer提供了集中函数式的调用方式,通过这种调用构建层与层之间的网络模型。 所以其编程特点: 1. 我们构建层,通过layer对象的可调用特性,或者使用apply与call实现链式函数调用。...导入 import tensorflow as tf import tensorflow.keras as keras import tensorflow.keras.layers as layers...hide1_layer, hide2_layer, output_layer]) 之后的训练中不要忘记改变model变量。

    6.5K01

    Keras中的Embedding层是如何工作的

    在学习的过程中遇到了这个问题,同时也看到了SO中有相同的问题。而keras-github中这个问题也挺有意思的,记录一下。...这个解释很不错,假如现在有这么两句话 Hope to see you soon Nice to see you again 在神经网络中,我们将这个作为输入,一般就会将每个单词用一个正整数代替,这样,上面的两句话在输入中是这样的...7,代表的是单词表的长度;第二个参数是output_dim,上面的值是2,代表输出后向量长度为2;第三个参数是input_length,上面的值是5,代表输入序列的长度。...vector就是下面这个: [[0.7, 1.7], [0.1, 4.2], [1.0, 3.1], [0.3, 2.1], [4.1, 2.0]] 原理上,从keras的那个issue可以看到,在执行过程中实际上是查表...,将输入的整数作为index,去检索矩阵的对应行,并将值取出。

    1.4K40

    LSTM原理及Keras中实现

    其中的内部机制就是通过四个门调节信息流,了解序列中哪些数据需要保留或丢弃。 image.png 通俗的原理 假设你在网上查看淘宝评论,以确定你是否想购买生活物品。...Keras 中 LSTM 的实现 加载依赖库 from keras.models import Sequential from keras.layers.core import Dense, Activation..., Dropout from keras.layers.recurrent import LSTM models 是 Keras 神经网络的核心。...Sequetial 表示我们将使用层堆叠起来的网络,这是Keras中的基本网络结构。 Dense, Activation, Dropout 这些是神经网络里面的核心层,用于构建整个神经网络。...LSTM 使用Keras中的RNN模型进行时间序列预测 用「动图」和「举例子」讲讲 RNN Understanding Input and Output shapes in LSTM | Keras

    12.8K125

    度量采集军备竞赛中搭救的采样方法

    MarketsAndMarkets在去年的一份报告中,预测IT运营分析(ITOA)市场将从2015年的21.7亿美元增长到2020年的9.79亿美元,2015年至2020年的年复合增长率(CAGR)为35.2...下表列出了通常在页面视图中收集的其他度量的子集。表中的第二列对应于每个度量的对应数值的最大值(最大的值的当然是正在使用监测服务的函数)。...事实上,采样方法已经用于大型系统,如Dapper。研究报告的作者说: ...我们发现采样是低开销中必需的,特别是在高度优化的Web服务中,这些服务往往对延迟敏感。...在Dapper中,同时采用了均匀和自适应采样率。...由于样本不包括全部总体,样本统计中如方法和分位点通常与总体的特征不同。这可能会导致漏报,从而可能对用户体验产生负面影响。抽样误差可以通过从总体中抽取足够大的随机样本得到。

    1.2K60

    Keras中的多变量时间序列预测-LSTMs

    在本教程中,您将了解如何在Keras深度学习库中,为多变量时间序列预测开发LSTM模型。...如果你有任何问题: 请看这篇教程:如何在Anaconda中配置Python环境,进行机器学习和深度学习 ---- 1.空气污染预测 该教程中,我们将使用空气质量数据集。...它能较长时间悬浮于空气中,其在空气中含量浓度越高,就代表空气污染越严重) DEWP:露点(又称露点温度(Dew point temperature),在气象学中是指在固定气压之下,空气中所含的气态水达到饱和而凝结成液态水所需要降至的温度...请记住,Kearas中LSTM的内部状态在每个训练批次结束后重置,所以作为若干天函数的内部状态可能会有作用。...最后,我们通过在fit()函数中设置validation_data参数来跟踪训练期间的训练和测试损失。在运行结束时,绘制训练和测试损失趋势线。

    3.2K41

    MySQL中的执行计划

    详细对MySQL中执行计划每个字段的解释 1.概述 ​ 一条查询语句在经过MySQL查询优化器的各种基于成本和规则的优化会后生成一个所谓的执行计划,这个执行计划展示了接下来具体执行查询的方式...执行计划输出中各列详解 执行计划使用的表结构 #两张一模一样表结构的表,s1,s2 CREATE TABLE single_table ( id INT NOT NULL AUTO_INCREMENT...执行计划的filtered列就代表查询优化器预测在这9827条记录中,有多少条记录满足其余的搜索条件,也就是common_field = ‘a’这个条件的百分比。...sort_union(…):如果执行计划的Extra列出现了Using intersect(…)提示,说明准备使用Intersect索引合并的方式执行查询,括号中的…表示需要进行索引合并的索引名称;如果出现了...Json格式的执行计划 上述的EXPLAIN语句输出中缺少了衡量执行计划好坏的重要执行成本属性,通过使用JSON可以查询到执行计划所花费的成本 在EXPLAIN单词和真正的查询语句中间加上FORMAT=

    86920

    KDD 2020 | 理解图表示学习中的负采样

    大量的网络嵌入工作已经研究出正节点对采样的良好标准。然而,很少有论文系统地分析或讨论图表示学习中的负采样。 在这篇文章中,作者证明了负采样与正采样一样重要。...同时考虑负采样,可以确定优化目标并减少真实图形数据中估计值的方差。...遍历且静止的马尔可夫链 ? ,这意味着 ? 2.4 马尔可夫链负采样 MCNS的主要想法是应用Metropolis-Hastings算法,对 ? 中的每个节点v从自对比估计分布中采样。...图3 度数和MCNS的比较 与度数的比较 图3中每条红线表示在此设置下MCNS的性能,蓝色曲线表示不同β的度数的性能,基于度的策略的表现一直低于MCNS,这表明MCNS在基于度的策略的表达能力之外学习了更好的负分布...4 总结 作者在文章中从理论上分析了负采样在图表示学习的作用,并得出结论:负采样分布和正采样分布同等重要,并且应与正采样分布正相关且呈次线性相关。

    1.7K70

    详解ERP中的计划层次!

    1 经营规划 企业的计划是从长远规划开始的,这个战略规划层次在ERP系统中称为经营规划。...总之,主生产计划在ERP系统中的位置是一个上下内外交叉的枢纽,地位十分重要。...德国的重型设备制造业习惯用的一种粗计划/细计划的计划系统,主生产计划相当于这种系统中的矩阵粗计划,也就是负荷/能力矩阵。...计划产出量若经确认,根据软件的设置也可以显示在计划接收量项中。最初显示的数量往往是在计划日期前执行中的下达定单、在计划日期之后到达的数量,如时段1的10。人工添加的接收量也可在此行显示。...主生产计划的计划对象主要是产品结构中0层的独立需求型物料,但是这个独立需求件的工艺路线中(例如装配工艺)往往并不一定含有关键工作中心。

    2K30
    领券