首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

最讨厌说大话,只想聊经验!我从创建Hello world神经网络到底学会了什么?

我开始跟神经网络打交道是在几年之前,在看了一篇关于神经网络用途的文章后,我特别渴望能够深入研究一下这个在过去几年间吸引了众多关注的问题解决方案。 2015年,斯坦佛大学研发了一个模型,当时我被这个模型惊艳到了,因为它可以生成图片以及其所属区域的自然语言描述。看完之后,我非常想要做一些类似的工作,于是我开始了搜索。 根据我在其他机器学习领域的相关专题的经验,非常详细的数学解释,各种各样的衍生以及公式让人理解起来特别困难。于是,我决定暂时抛开这些。 当然这并不是说能立即上手写代码。必须学习一些关于神经网络的

05

One-Shot Unsupervised Cross Domain Translation

给出一个来自领域A的单一图像x和一组来自领域B的图像,我们的任务是生成x在B中的类似物。我们认为,这项任务可能是一项关键的人工智能能力,它强调了认知代理在这个世界上的行动能力,并提出了经验证据,表明现有的无监督领域翻译方法在这项任务上失败。我们的方法遵循一个两步过程。首先,为领域B训练一个变异自动编码器。然后,给定新的样本x,我们通过调整接近图像的层来创建A域的变异自动编码器,以便直接适应x,而只间接适应其他层。我们的实验表明,当对一个样本x进行训练时,新方法和现有的领域转移方法一样好,当这些方法享受来自领域A的大量训练样本时。我们的代码可在https://github.com/sagiebenaim/OneShotTranslation 公开。

02

YOLC 来袭 | 遥遥领先 !YOLO与CenterNet思想火花碰撞,让小目标的检测性能原地起飞,落地价值极大 !

为了解决这些问题,作者提出了YOLC(You Only Look Clusters),这是一个高效且有效的框架,建立在 Anchor-Free 点目标检测器CenterNet之上。为了克服大规模图像和不均匀物体分布带来的挑战,作者引入了一个局部尺度模块(LSM),该模块自适应搜索聚类区域进行放大以实现精确检测。 此外,作者使用高斯Wasserstein距离(GWD)修改回归损失,以获得高质量的边界框。在检测Head中采用了可变形卷积和细化方法,以增强小物体的检测。作者在两个空中图像数据集上进行了大量实验,包括Visdrone2019和UAVDT,以证明YOLC的有效性和优越性。

02

动物与人类存在的「关键学习期」,联邦学习也有

关于关键学习期问题,我们之前撰写过这样一篇文章深度学习中的关键学习期(Critical learning periods)。生物学领域的研究人员已经确定,人类或动物存在关键期的原因是对神经元可塑性窗口的生物化学调控(the biochemical modulation of windows of neuronal plasticity)[1]。从生物学角度来看,关键期(critical periods)是指出生后早期发育的时间窗口,在这期间,感知缺陷可能导致永久性的技能损伤。生物学领域的研究人员已经发现并记录了影响一系列物种和系统的关键期,包括小猫的视力、鸟类的歌曲学习等等。对于人类来说,在视觉发育的关键时期,未被矫正的眼睛缺陷(如斜视、白内障)会导致 1/50 的成人弱视。

03
领券