首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

P值的直方图

是用来显示统计假设检验中得到的P值的分布情况的一种图形表示方法。P值是指在给定一个统计模型的假设下,观察到的数据结果出现所谓“极端情况”或更为“极端情况”的概率。P值的直方图可以用来了解数据集中的P值分布情况以及是否存在统计显著性。

P值的直方图可以分为以下几个方面进行描述:

  1. 概念:P值(Probability value)是指根据观察到的样本数据,计算出来的在原假设为真时,观察到样本结果或更为“极端情况”发生的概率。
  2. 分类:P值可以分为两类,一类是单侧P值,用来评估统计量偏离原假设的程度;另一类是双侧P值,用来评估统计量偏离原假设的两个方向的程度。
  3. 优势:P值的优势在于能够提供一个具体的数值来评估统计量与原假设的偏离程度,帮助进行假设检验和判断是否拒绝原假设。
  4. 应用场景:P值的直方图可以在统计假设检验中使用,比如在医学研究中评估新药物的疗效、在社会科学研究中评估政策措施的效果等。
  5. 腾讯云相关产品和产品介绍链接地址:在腾讯云上进行云计算相关工作,可以使用云服务器、云数据库、容器服务等产品来搭建和管理云计算环境。具体产品介绍和链接地址可以参考腾讯云官方网站(https://cloud.tencent.com/)。

需要注意的是,P值的直方图仅仅是对P值的分布情况进行可视化展示,并不能直接用来判断统计显著性或证明假设成立。在实际应用中,还需要结合其他统计方法和领域知识来进行综合分析和判断。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

统计| p值的计算

p值的计算,R语言和python的实现 今天来说说频率中假设检验要依赖的评估指标:p值,对,你也许很清楚的知道它表达的意思,但是它是怎么算得的呢?不知道你是否知道呢?...这次将介绍几种分布计算p值的方法(套路)。 这里以两样本均值的假设检验为例来说明。...要介绍的分布有: 正态分布 t分布 设两样本分别为XX和YY,基于中心极限定理,无论XX和YY属于什么分布,只要样本量足够大,它们的均值服从正态分布。.../67640775 p值是说在原假设成立的条件下,原假设发生的概率,若是p值小于0.05,发生概率小于0.05时,认为是小概率发生了,即是差异性显著,拒绝原假设。...公式: 双边假设的p值: p=P(z<−|x¯−y¯S2xn+S2ym−−−−−−−√|) p = P( z < -| \frac{ \overline{x} - \overline{y

3.2K20

P值之死

有一天,我走进统计学的神殿 ,将所有谎言都装进原假设的盒子里, “P值为零”, 一个声音传来, “但你已经不能再拒绝,因为,P值已经死了” 从此,这个世界上充斥着谎言。...实际上,问题并不在数据中,而是P值出了问题,正如罗斯福大学的经济学家史蒂芬所说,“P值没有起到人们期望的作用,因为它压根就不可能起到这个作用。” ? 为什么呢?为什么P值没有达到人们的期望?...它的问题到底在哪?现在和数说君一起来梳理一下P值和假设检验的历史,并从中寻找答案吧。 ? 二、P值和假设检验的历史 1....Fisher P值能风靡学术界这么多年,费雪是第一推手,被他推动的除了P值,还有被称为“费雪学派”(Fisherian)的假设检验思想。...三、悲剧的结论 梳理完P值和假设检验的历史,你应该知道为什么罗斯福大学的经济学家史蒂芬说,“P值没有起到人们期望的作用,因为它压根就不可能起到这个作用。”

1.3K70
  • 浅议P值校正

    P值,通常被我们用来判断是否接受一个假设,关于P值的前世今生,可以看数说君的了一篇文章《P值之死》,在微信公众号中回复“P值”查看。...至于P值是怎么来的,为什么用P值和α相比来判断,可以去看《P值之死》,里面已经进行了详细的梳理。...对于每一个检验的P值,有: P<α=0.05/m,我们才能拒绝H0; 这样我们就校正了显著水平,当然我们也可以让α保持不变,去校正P值: P*m<α=0.05,我们才能拒绝H0; 也就是说,每一个检验做出来的...P值,我们都要乘以m,叫做校正后的P值,然后去和0.05进行比较。...或者,保持α不变,将P值校正为mP(i)/i,这个值又称为Q值 Q-value(i) = m × P(i)/i < α 根据Benjaminiand和Hochberg的论文(1995)里的证明, 以上的过程就可以控制

    6.7K61

    【温故】P值之死

    P值的争论,纪念一下100年前的今天。...实际上,问题并不在数据中,而是P值出了问题,正如罗斯福大学的经济学家史蒂芬所说,“P值没有起到人们期望的作用,因为它压根就不可能起到这个作用。” ? 为什么呢?为什么P值没有达到人们的期望?...它的问题到底在哪?现在和数说君一起来梳理一下P值和假设检验的历史,并从中寻找答案吧。 ? 二、P值和假设检验的历史 1....Fisher P值能风靡学术界这么多年,费雪是第一推手,被他推动的除了P值,还有被称为“费雪学派”(Fisherian)的假设检验思想。...三、悲剧的结论 梳理完P值和假设检验的历史,你应该知道为什么罗斯福大学的经济学家史蒂芬说,“P值没有起到人们期望的作用,因为它压根就不可能起到这个作用。”

    80420

    功效分析:P值的胞弟

    学过统计学基础的同学们,对P值耳熟能详,脱口而出;关于功效我们多半像个丈二和尚,摸不着头脑。...2,P值与功效 P值:拒绝原假设而犯错第一类错误的概率。是在【基准显著水平】做拒绝或不拒绝原假设的定性指标。 功效是:1-β(第二类错误的概率)概率来定义,它衡量真实事件发生的概率。...为什么有了P值检测,还有功效检测呢?实验最重要的是提升可信度和说服力,P值虽好但也不是处处皆好,所以多一个功效检测,多一道安心的保障。...4,主角的效应值的开场 影响功效的因素有3个:样本大小,显著性水平,效应值。...我们也说过效应值是度量处理的差异程度的,不能的研究方向,不同的功效计算方法对应不同的效应值计算公式。常用的公式如下 4.3,效应值大小的标准?

    68140

    opencv 特征值_直方图阈值图像分割

    这个函数的第一个参数就是原图像,原图像应该是灰度图。第二个参数就是用来对像素值进行分类的阈值。第三个参数就是当像素值高于(有时是小于)阈值时应该被赋予的新的像素值。...如果是一幅双峰图像(双峰图像是指图像直方图中存在两个峰)我们岂不是应该在两个峰之间的峰谷选一个值作为阈值?这就是 Otsu 二值化要做的。简单来说就是对一幅双峰图像自动根据其直方图计算出一个阈值。...然后算法会找到最优阈值,这个最优阈值就是返回值 retVal。如果不使用 Otsu 二值化,返回的retVal 值与设定的阈值相等。   下面的例子中,输入图像是一副带有噪声的图像。...第二种方法,直接使用 Otsu 二值化。第三种方法,首先使用一个 5×5 的高斯核除去噪音,然后再使用 Otsu 二值化。看看噪音去除对结果的影响有多大吧。...p1*b1)/q1,np.sum(p2*b2)/q2 v1,v2 = np.sum(((b1-m1)**2)*p1)/q1,np.sum(((b2-m2)**2)*p2)/q2 fn = v1*q1 +

    63220

    ​为什么说p值像根针?一场关于p值的战争!

    如果你对p值比较陌生,简单来说呢,p值是一个告诉你是否应该认为原假设很荒谬的决策工具。 反对p值 当人们(经常是贝叶斯学派)批判p值的时候,通常可以归结为两种论点: 1、关于定义或公式。...神秘的p值显示出了非常强的诱惑——大多数使用p值的人都不理解如何使用它,由此产生的沟通不畅已经达到了一个荒谬的水平。我和你一样。 ? 这就是我们为什么极力提倡放轻松。...没有什么魔法能让不确定性变成确定性,但不知何故,总有假装内行的人走在了相反的一边。 支持p值 你应该对那些对p值怀有极端狂热的人也抱有怀疑。p值只是在一些非常特定的情形下才有用。...但当p值有用的时候,就会不鸣则已,一鸣惊人。 p值是特定方式下决策的有力工具 质疑这一点非常困难。对想要尽力在不确定的世界里以特定方式做出决策的决策者来说,p值堪称完美。...你很乐意用这篇推文的逻辑来做决策。如果不是,p值就不适合你。这没有什么好争论的。p值对某些工作来说是很好的工具,但对你需要完成的工作来说不是。去找一个更好的工具吧。

    50020

    scRNA分析|自定义你的箱线图-统计检验,添加p值,分组比较p值

    本文主要解决以下几个问题 (1)指定统计检验方式(2)指定比较组并添加P值(3)任意比较(4)分组比较 (5)使用星号代替P值 等 一 载入R包 数据 使用本文开始的基因集评分的结果 和 ggpubr...right") p2 + stat_compare_means(aes(group = group)) 三 可视化调整 除上述之外还有一些常见的小调整,比如去掉p值前面的统计方法, 将P值改为星号,...= paste0("p =", ..p.format..)) ) 2,将p值改为星号 p1+stat_compare_means(comparisons = my_comparisons,...aes(label = paste0("p =", ..p.format..)), # 只显示p值大小,不呈现计算方法 color="grey50",...# 字体的颜色 method = "wilcox.test", # size=5, # p值的文字的大小

    4.1K20

    python中opencv直方图处理,并且设置参数criteria的值分享

    /3, 400, 700/3, 150), (75+1400/3, 400, 700/3, 150)] datefmt='%Y-%m-%d %H:%M:%S %p'..., ) break语法:rename(old_path, new_path)# 设置参数criteria的值append() 函数可以向列表末尾添加「任意类型」的元素python中opencv...直方图处理 hmac 加盐加密模块ran_str = ''.join(random.sample(string.ascii_letters + string.digits, 8))def login()...#将公司名和统计结果赋值给新的变量 如果你把fixture函数放到conftest.py文件中,那么在这个文件所在的整个目录下,都可以直接请求里面的fixture,不需要导入。...,无论校验的内容有多大,得到的hash值长度是固定的,可以用于对文本的哈希处理(venv) E:\Codes\python_everything\begining-python\src\08>list8

    92020

    matlab中直方图的定义_matlab绘制直方图

    (4) J = histeq( I , n) (5) J = histeq( I , ma p , n) (6) [ J , counts ] = histeq( I , ?)...说明:对于格式(1) ,显示图像I 的直方图,n 为灰度级 数目,灰度图像的缺省值为256 ,黑白图像缺省值为2 ;对于 格式(2) ,J 返回调色板为map 的图像I 的直方图;对格式(3) ,返回图像...I 的每个灰度上的像素点数目;格式(4) 对图 像I 均衡化处理,n 表示灰度级数目,缺省值为64 ;格式(5) 对调色板为map 的灰度图像均衡化处理,返回有n 级灰度 的图像;格式(6) 对图像I...均衡化处理后同时返回各灰度 值。...( I ,256) ; %显示原始图像直方图, 灰度级为256 tit le(′原始图像直方图′) ; %直方图均衡化处理 J = histeq( I ,32) ; %均衡化处理为灰度级为32 的直方图

    72020

    图像的灰度直方图、直方图均衡化、直方图规定化(匹配)

    本文主要介绍了灰度直方图相关的处理,包括以下几个方面的内容: 利用OpenCV计算图像的灰度直方图,并绘制直方图曲线 直方图均衡化的原理及实现 直方图规定化(匹配)的原理及实现 图像的灰度直方图 一幅图像由不同灰度值的像素组成...灰度直方图的计算公式如下: p(r_k)=\frac{n_k}{MN} 其中,rk是像素的灰度级,nk是具有灰度rk的像素的个数,MN是图像中总的像素个数。...直方图均衡化,对图像进行非线性拉伸,重新分配图像的灰度值,使一定范围内图像的灰度值大致相等。...\mid 的值最小。...直方图规定化的实现 直方图规定化的实现可以分为一下三步: 计算原图像的累积直方图 计算规定直方图的累积直方图 计算两累积直方图的差值的绝对值 根据累积直方图差值建立灰度级的映射 具体代码实现如下: void

    5.4K10

    听说你的KM-plot p值>0.05

    0.背景知识 KM-plot是生存分析最常用的图表,没有之一。它接受的分组依据必须是离散型的数据,就是固定分成有限的几类,不能是数值这样的连续型数据。...按照某个具体数值作为分界线,大于该值的是一个组, 小于该值的是另一个组。 常见的离散化方案分界线的选择方法有三种: 1.按照经验值,例如年龄按照60分为年长组和年轻组。...2.按照中位数 3.按照最佳截断值 最佳截断值是约登指数(敏感度+特异度-1)最大的点,说人话就是让KM-plot上的p值最小的值。...例如我编的数据年龄范围是45-100,那么就是说在这个范围内去计算一系列的截断值和它对应的p值,找出让p值最小的那个截断值。我经常说这是一种耍流氓行为!你可以不用但是不能不会啊。...我举得例子真好,按照中位数不显著,按照最佳截断值就显著。有些东西就是,你感觉不应该这样干但是架不住它太有诱惑力了。 生存分析的图有一个简化的画法,在我的包里,就图一个简单美丽。

    5500

    抛弃P值,选择更直观的AB测试!

    一个简单而又智能的方法就是A/B。本篇文章将简要地解释A/B测试背后的动机,并概述其背后的逻辑,以及带来的问题:它使用的P值很容易被误解。...然后计算一个 p 值并检查它是否在某个任意范围内,如5%。不妨选择Welch-t检验。...=False, alternative="less").pvalue:.1%}') # output: p-value: 7.8% 因为有些人对P值很纠结,这里解读下它: 鉴于H₀是正确的,我们得到所观察到的或更极端的结果的机会最多是...我认为 p 值的定义相当不直观——每个误解 p 值的人都证明了这一点。最常见的误解如下: 蓝色更好的概率是 7.8%。(错误的!!!)...通常情况下,人们使用经典的 A/B 测试,往往会使用 p 值。虽然这是统计学家熟悉的概念,但普通人经常会得到涉及 p 值的混淆陈述。

    77050

    如何理解六西格玛中的P值

    P值广泛用于统计中,包括T检验、回归分析等。大家都知道,在假设检验中P值起到非常重要的作用。为了更好理解P值,先来看看什么是原(零)假设。 在假设检验中,什么是原(零)假设?...图片 什么是P值? 天行健表示:P值是介于0和1之间的一个数值,用来测量你的数据和原假设有多大的相符性;P值表达的是,你的数据有多大的可能性呈现是一个真实的原假设?...它没有去测量对备择假设的支持有多大。...如果P值比较小(<0.05),那么你的样品(参数)有足够的证据告诉你,可以拒绝原假设,即新旧材料之间有差异; 如果P值>0.05,那么我们很难下结论说新旧材料间是明显差异的,只能说没有足够的数据和证据证明差异性...; 如果P值恰好等于0.05,那么我们很难有结论说有无明显差异,在这种情况下,需要收集更多的数据来重新计算P值;或者,冒着一定的风险认为新旧是有差异的。

    1.4K20

    php实现计算QQ空间登录的p值

    流弊 就在昨天困扰了我四个月之久的QQ空间登录p值的计算问题终于被解决了,众所周知QQ空间登录是四步进行的,前三步我都完成了,但是第四步涉及到一个p值的计算,而我能嫖到的代码只有一个login.js,...php $uin = ''; //QQ账号 $pwd = ''; //QQ密码 $vcode = ''; //vc值通过QQ登录第三步来获取 $p_value = json_decode(file_get_contents...('http://api.moleft.cn/qq/p.php?...$vcode),true); if($p_value['code']>0){ echo $p_value['data']; }else{ echo 'null'; } ?...声明 我不是小学生,没空偷你账号密码和ck,信就信,不信就Ctrl+W 如无特殊说明《php实现计算QQ空间登录的p值》为博主MoLeft原创,转载请注明原文链接为:https://moleft.cn

    89510

    灰度直方图及直方图均衡化的MATLAB实现

    文章目录 灰度直方图及直方图均衡化 目的 内容 1.直方图的显示 2.计算并绘制图像直方图 3.直方图均衡化 灰度直方图及直方图均衡化 目的 1.直方图的显示 2.计算并绘制图像直方图 3.直方图的均衡化...内容 灰度直方图用于显示图像的灰度值分布情况,是数字图像处理中最简单和最实用的工具。...h=imhist(A); h1=h(1:10:256); horz=1:10:256; bar(horz,h1)% 用bar 函数显示 axis([0 255 0 15000])% 设置水平轴和垂直轴的最大值和最小值...A); h1=h(1:10:256); horz=1:10:256; stem(horz,h1,'fill')% 用stem 函数显示 axis([0 255 0 15000])% 设置水平轴和垂直轴的最大值和最小值...DIP3E_CH02\Fig0221(a)(ctskull-256).tif ','tif'); h=imhist(A); plot(h) axis([0 255 0 15000])% 设置水平轴和垂直轴的最大值和最小值

    90220

    图像的直方图

    灰度直方图的定义 灰度直方图定义为数字图像中各灰度级与其出现的频数之间的统计关系,用公式表示为P(k)=\frac{n_k}{n}, \quad k=0,1,......,L-1且\sum_{k=0}^{L-1}P(k)=1式中,k为图像f(m,n)的第k级灰度值;n_k为f(m,n)中灰度值为k的像素个数;n为图像的总像素个数;L为灰度级数。...直方图与图像清晰度的关系 总的来说:直方图反映了图像的清晰程度,当直方图均匀分布时,图像最清晰。...具体说来: 暗图像对应的直方图组成成分集中在灰度值较小(暗)的左边一侧; 亮图像的直方图则倾向于灰度值较大(亮)的右边一侧; 对比度较低的图像对应的直方图窄而集中于灰度级的中部; 对比度高的图像对应的直方图分布范围宽而且分布均匀...直方图均衡化 直方图均衡化就是通过原始图像的灰度非线性变换,使其直方图变成均匀分布,以增加图像灰度值的动态范围,从而达到增强图像整体对比度,使图像达到清晰的效果。

    1K40
    领券