首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python数据处理神器pandas,图解剖析分组聚合处理

点击上方"数据大宇宙",设为星标,干货资料,第一时间送到! 前言 身边有许多正在学习 Python 的 pandas 库做数据处理的小伙伴们都遇到一个问题——分组聚合。...本文主要涉及的函数和要的: groupby apply agg transform 总结这些函数的特点,说明解决思路。...数据处理时同样需要按类别分组处理,面对这样的高频功能需求, pandas 中提供 groupby 方法进行分组。 按 class 进行分组 如下图的代码: 17-19行,两行的写法是一样的。...---- 有时候,自定义函数也需要额外的参数。 比如,希望返回 value 列减去指定值的新列 在调用 apply 时,传入命名参数值即可。...一般在使用 transform 时,在 groupby 之后指定一列。 自定义函数中可以很容易求得 value 的均值。

1.3K21

Python数据分析 | Pandas数据分组与操作

pandas整个系列覆盖以下内容: 图解Pandas核心操作函数大全 图解Pandas数据变换高级函数 Pandas数据分组与操作 一、Pandas数据分组与操作 在我们进行业务数据分析时,经常要对数据根据...Pandas中可以借助groupby操作对Dataframe分组操作,本文介绍groupby的基本原理及对应的agg、transform和apply方法与操作。...groupby之后可以进行下一步操作,注意,在groupby之后的一系列操作(如agg、apply等),均是基于子DataFrame的操作。 下面我们一起看看groupby之后的常见操作。...2.2 agg 聚合操作 聚合统计操作是groupby后最常见的操作,类比于SQL中我们会对数据按照group做聚合,pandas中通过agg来完成。...本系列教程涉及的速查表可以在以下地址下载获取 Pandas速查表 NumPy速查表 Matplotlib速查表 Seaborn速查表 拓展参考资料 Pandas官方教程 Pandas中文教程 ShowMeAI

2.9K41
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    对比MySQL学习Pandas的groupby分组聚合

    01 MySQL和Pandas做分组聚合的对比说明 1)都是用来处理表格数据 不管是mysql,还是pandas,都是处理像excel那样的二维表格数据的。...最后执行的是having表示分组后的筛选,在pandas中,通过上图可以发现我们得到了一个df1对象,针对这个df1对象,我们再做一次筛选,也表示分组后的筛选。...综上所述:只要你的逻辑想好了,在pandas中,由于语法顺序和逻辑执行顺序是一致的,你就按照逻辑顺序写下去,就很容易了。...; 注意:combine这一步是自动完成的,因此针对pandas中的分组聚合,我们只需要学习两个内容,① 学习怎么分组;② 学习如何针对每个分组中的数据,进行对应的逻辑操作; 03 groupby分组对象的相关操作...04 agg()聚合操作的相关说明 当使用了groupby()分组的时候,得到的就是一个分组对象。当没有使用groupby()分组的时候,整张表可以看成是一个组,也相当于是一个分组对象。

    3.2K10

    对比MySQL学习Pandas的groupby分组聚合

    01 MySQL和Pandas做分组聚合的对比说明 1)都是用来处理表格数据 不管是mysql,还是pandas,都是处理像excel那样的二维表格数据的。...最后执行的是having表示分组后的筛选,在pandas中,通过上图可以发现我们得到了一个df1对象,针对这个df1对象,我们再做一次筛选,也表示分组后的筛选。...综上所述:只要你的逻辑想好了,在pandas中,由于语法顺序和逻辑执行顺序是一致的,你就按照逻辑顺序写下去,就很容易了。...; 注意:combine这一步是自动完成的,因此针对pandas中的分组聚合,我们只需要学习两个内容,① 学习怎么分组;② 学习如何针对每个分组中的数据,进行对应的逻辑操作; 03 groupby分组对象的相关操作...04 agg()聚合操作的相关说明 当使用了groupby()分组的时候,得到的就是一个分组对象。当没有使用groupby()分组的时候,整张表可以看成是一个组,也相当于是一个分组对象。

    2.9K10

    数据导入与预处理-第6章-02数据变换

    2.1.1 数据标准化处理 数据标准化处理是将数据按照一定的比例缩放,使之投射到一个比较小的特定区间。...使用pandas的groupby()方法拆分数据后会返回一个GroupBy类的对象,该对象是一个可迭代对象,它里面包含了每个分组的具体信息,但无法直接被显示。...定义求极差的函数 def my_range(arr): return arr.max()-arr.min() groupby_obj.agg(my_range) # 使用agg()方法聚合分组数据...输出为: 指定列聚合 # 使用agg()方法聚合分组中指定列的数据 groupby_obj.agg({'a':'max', 'c':'sum', 'e': my_range}) 输出为:...在使用agg方法中,还经常使用重置索引+重命名的方式: # 初始化分组DF import pandas as pd df_obj = pd.DataFrame({'a': [0, 1, 2, 3, 4

    19.3K20

    Pandas数据聚合:groupby与agg

    引言 在数据分析中,数据聚合是一项非常重要的操作。Pandas库提供了强大的groupby和agg功能,使得我们能够轻松地对数据进行分组和聚合计算。...本文将从基础概念、常见问题、常见报错及解决方案等方面,由浅入深地介绍如何使用Pandas的groupby和agg方法,并通过代码案例进行详细解释。...基础概念 groupby 方法 groupby是Pandas中最常用的分组工具之一。它允许我们将DataFrame按照一个或多个列进行分组,从而可以对每个分组执行各种聚合操作。...如果希望去除重复项后再进行分组,可以在groupby之前使用drop_duplicates()。 缺失值处理:默认情况下,groupby会忽略含有NaN值的行。...("\n对同一列应用多个聚合函数:") print(multi_func_agg_result) 总结 通过对Pandas groupby和agg的学习,我们可以更好地理解和运用这一强大工具来满足各种数据分析需求

    41110

    Pandas_Study02

    pandas 数据清洗 1. 去除 NaN 值 在Pandas的各类数据Series和DataFrame里字段值为NaN的为缺失数据,不代表0而是说没有赋值数据,类似于python中的None值。...= col) df2 = pd.DataFrame(val2, index = idx, columns = col) # 在列标 相同的情况下,就是后一个df 接在前一个df 后面 df12 = pd.concat...([df1, df2]) 当然,列标和行标不一定是对应的,这个时候两DataFrame未匹配上的label或columns下的值为NaN concat 函数 同样的可以指定是按行操作还是按列操作。...DataFrame数据对象经groupby()之后有ngroups和groups等属性,其本质是DataFrame类的子类DataFrameGroupBy的实例对象。...pandas 时间序列 时间序列数据在金融、经济、神经科学、物理学里都是一种重要的结构化的数据表现形式。

    20510

    Pandas中实现聚合统计,有几种方法?

    这里首先给出模拟数据集,不妨给定包括如下两列的一个dataframe,需求是统计各国将领的人数。应该讲这是一个很基础的需求,旨在通过这一需求梳理pandas中分组聚合的几种通用方式。 ?...02 groupby+count 第一种实现算是走了取巧的方式,对于更为通用的聚合统计其实是不具有泛化性的,那么pandas中标准的聚合是什么样的呢?...对于上述仅有一种聚合函数的例子,在pandas中更倾向于使用groupby直接+聚合函数,例如上述的分组计数需求,其实就是groupby+count实现。...03 groupby+agg 上述方法是直接使用groupby+相应的聚合函数,这种聚合统计方法简单易懂,但缺点就是仅能实现单一的聚合需求,对于有多种聚合函数的情况是不适用的。...agg的函数文档如下: ? 这里,仍然以上述分组计数为例,讲解groupby+agg的三种典型应用方式: agg内接收聚合函数或聚合函数列表。

    3.2K60

    Pandas的apply, map, transform介绍和性能测试

    虽然apply的灵活性使其成为一个简单的选择,但本文介绍了其他Pandas函数作为潜在的替代方案。 在这篇文章中,我们将通过一些示例讨论apply、agg、map和transform的预期用途。...applymap就像map一样,但是是在DataFrame上以elementwise的方式工作,但由于它是由apply内部实现的,所以它不能接受字典或Series作为输入——只允许使用函数。...DataFrame.agg(func=None, axis=0, *args, **kwargs) -> scalar | pd.Series | pd.DataFrame agg函数更容易理解...df.groupby("subject")["score"].agg( ["min", "mean", "max"] ).round(2) Agg提供了更多执行聚合的选项。...在这种情况下,即使 apply 函数预期返回一个Series,但最终会产生一个DataFrame。 结果类似于额外的拆栈操作。我们这里尝试重现它。我们将使用我们的原始数据框并添加一个城市列。

    2K30

    Pandas从小白到大师

    回到我们定义的convert_df()方法上来,如果某一列百分之50以上的值都是独一无二的(unique),它可以自动地把列的类型转换为类别变量。 让我们看看数据都发生了什么神奇变化吧!...索引 在pandas中,我们有两种方式获得数据,一种是通过索引(indexing),另外一种是通过查询(query),在大多数情况下,通过索引(或者多重索引)效果更佳,让我们看一下例子吧!...: (df .groupby('age') .agg({'generation':'unique'}) .rename(columns={'generation':'unique_generation...该方法也可以接受任意函数(functions),在0.25版本的pandas中,新增了新的使用agg的方式: #使用sort_values函数和head 函数 排序并得到前10名 (df .groupby...10名 (df .groupby(['country', 'year']) .agg({'suicides_per_100k': 'sum'}) .rename(columns={'suicides_per

    1.1K41

    《Pandas Cookbook》第07章 分组聚合、过滤、转换1. 定义聚合2. 用多个列和函数进行分组和聚合3. 分组后去除多级索引4. 自定义聚合函数5. 用 *args 和 **kwargs

    # 按照AIRLINE分组,使用agg方法,传入要聚合的列和聚合函数 In[3]: flights.groupby('AIRLINE').agg({'ARR_DELAY':'mean'}).head(...) Out[7]: pandas.core.groupby.DataFrameGroupBy 更多 # 如果agg接收的不是聚合函数,则会导致异常 In[8]: flights.groupby('AIRLINE...() return std_score.abs().max() # agg聚合函数在调用方法时,直接引入自定义的函数名 In[25]: college.groupby('STABBR...(grouped.agg) Out[32]: 如何做 # 自定义一个返回去本科生人数在1000和3000之间的比例的函数 In[33...# groupby对象使用head方法,可以在一个DataFrame钟显示每个分组的头几行 In[49]: grouped.head(2).head(6) Out[49]: ?

    8.9K20

    Pandas0.25来了,别错过这10大好用的新功能

    Groupby 的命名聚合(Named Aggregation) 这可是个新功能,能直接为指定的聚合输出列命名。先创建一个 DataFrame 示例。...命名聚合取代了已经废弃的 dict-of-dicts 重命名方式,看了一下,之前的操作还真是挺复杂的,这里就不赘述了,有兴趣回顾的朋友,可以自己看下用 dict 重命名 groupby.agg() 输出结果...animals.groupby('品种').身高.agg( 最低=min, 最高=max, ) ? 更多有关命名聚合的介绍,详见官方文档 Named aggregation 。 2....精简显示 Series 与 DataFrame 超过 60 行的 Series 与 DataFrame,pandas 会默认最多只显示 60 行(见 display.max_rows 选项)。...好了,本文就先介绍 pandas 0.25 的这些改变,其实,0.25 还包括了很多优化,比如,对 DataFrame GroupBy 后 ffill, bfill 方法的调整,对类别型数据的 argsort

    2.2K30

    机器学习库:pandas

    写在开头 在机器学习中,我们除了关注模型的性能外,数据处理更是必不可少,本文将介绍一个重要的数据处理库pandas,将随着我的学习过程不断增加内容 基本数据格式 pandas提供了两种数据类型:Series...和DataFrame,在机器学习中主要使用DataFrame,我们也重点介绍这个 DataFrame dataframe是一个二维的数据结构,常用来处理表格数据 使用代码 import pandas as...,我们使用list函数把它转化成列表然后打印出来,可以看到成功分组了,我们接下来会讲解如何使用聚合函数求和 聚合函数agg 在上面的例子中我们已经分好了组,接下来我们使用agg函数来进行求和,agg函数接收的参数是一个函数...'工作时长': [1, 2, 3, 4, 5]}) print(df.groupby("str").agg(sum)) 我们这里给agg函数传入了求和函数,可以看到求出了两个员工的总工作时长 数据删除...在机器学习竞赛时,有时我们想删除一些无用特征,怎么实现删除无用特征的列呢?

    14510

    【数据处理包Pandas】分组及相关操作

    type(list(df.groupby('team'))[0][1]) pandas.core.frame.DataFrame (三)通过循环查看各组的名称和组中的数据信息 也可以通过循环查看各组的名称和组中的数据信息...:输出汇总转换后的各组结果 图片来源:Pandas之超好用的Groupby用法详解(https://zhuanlan.zhihu.com/p/101284491?...此时agg的参数是列表,计算结果会产生多级的列索引,并且索引名一般用列表中的函数名(或与之相关)。...分组后应用apply函数,其实是在 split 得到的每一个 DataFrame 对象上应用指定的函数(分组是先 split 再 apply)。...,在调用函数的同时还可以给它传递参数(agg也可以通过args给函数传参数) 示例:求每一组特定列的前几名 排序操作不是聚合,聚合是返回1个标量,排序会返回多个值,因此只能用apply而不能用agg。

    18600

    我的Python分析成长之路9

    pandas入门 统计分析是数据分析的重要组成部分,它几乎贯穿整个数据分析的流程。运用统计方法,将定量与定性结合,进行的研究活动叫做统计分析。而pandas是统计分析的重要库。...1.pandas数据结构     在pandas中,有两个常用的数据结构:Series和Dataframe  为大多数应用提供了一个有效、易用的基础。     ...)) #返回每组的分位数 20 group2 = df['data1'].groupby([df['key1'],df['key2']]) #根据key1,key2分组 21 print(group.agg...不同之处在于,与agg方法相比,apply方法传入的函数只能作用于这个DataFrame或Series,而无法像agg一样能够对不同字段函数使用不同函数来获取不同结果。     ...()-x.min() print(group.agg(f)) #使用自定义函数 group3 = df.groupby(df["key1"]) print(group3.agg({"data1

    2.1K11

    python数据分析——数据分类汇总与统计

    pandas提供了一个名为DataFrame的数据结构,它可以方便地存储和处理表格型数据。...假设我们有一个包含学生信息的CSV文件,我们可以使用以下代码将其加载到DataFrame中: df = pd.read_csv('student_data.csv') 在加载数据后,我们可以使用pandas...关键技术: groupby函数和agg函数的联用。在我们用pandas对数据进 行分组聚合的实际操作中,很多时候会同时使用groupby函数和agg函数。...,'mean']} df.groupby('Country').agg(df_age) 在我们对数据进行聚合的过程中,除了使用sum()、max ()等系统自带的聚合函数之外,大家也可以使用自己定义的函数...首先,编写一个选取指定列具有最大值的行的函数: 现在,如果对smoker分组并用该函数调用apply,就会得到: top函数在DataFrame的各个片段调用,然后结果由pandas.concat

    82410
    领券