首页
学习
活动
专区
圈层
工具
发布

pandas DataFrame的创建方法

pandas DataFrame的增删查改总结系列文章: pandas DaFrame的创建方法 pandas DataFrame的查询方法 pandas DataFrame行或列的删除方法 pandas...DataFrame的修改方法 在pandas里,DataFrame是最经常用的数据结构,这里总结生成和添加数据的方法: ①、把其他格式的数据整理到DataFrame中; ②在已有的DataFrame...3.2 添加行 此时我们又来了一位新的同学Iric,需要在DataFrame中添加这个同学的信息,我们可以使用loc方法: new_line = [7,'Iric',99] test_dict_df.loc...[6]= new_line 但是十分注意的是,这样实际是改的操作,如果loc[index]中的index已经存在,则新的值会覆盖之前的值。...当然也可以把这些新的数据构建为一个新的DataFrame,然后两个DataFrame拼起来。

3.4K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【数据处理包Pandas】DataFrame的创建

    一、DataFrame简介   DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。...DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共用同一个索引)是基于。...DataFrame的属性: 函数 返回值 values 元素 index 索引 columns 列名 dtypes 类型 size 元素个数 ndim 维度数 shape 数据形状(行列数目) 导入...NumPy 库和 Pandas 库: import numpy as np import pandas as pd 二、基于一维数据创建 DataFrame对象看成一维对象的有序序列,序列中的对象元素又分成按列排列和按行排列两种情况...注意:使用index和columns属性查看DataFrame的行、列名。

    68200

    Pandas创建DataFrame对象的几种常用方法

    DataFrame是pandas常用的数据类型之一,表示带标签的可变二维表格。本文介绍如何创建DataFrame对象,后面会陆续介绍DataFrame对象的用法。...生成后面创建DataFrame对象时用到的日期时间索引: ? 创建DataFrame对象,索引为2013年每个月的最后一天,列名分别是A、B、C、D,数据为12行4列随机数。 ?...创建DataFrame对象,索引与列名与上面的代码相同,数据为12行4列1到100之间的随机数。 ?...根据字典来创建DataFrame对象,字典的“键”作为DataFrame对象的列名,其中B列数据是使用pandas的date_range()函数生成的日期时间,C列数据来自于使用pandas的Series...下面图中的代码与上面代码的不同在于,C列使用index属性修改了整个DataFrame对象的索引。上面代码使用数字做索引,下面的代码使用字符串做索引。 ?

    4K80

    (六)Python:Pandas中的DataFrame

    目录 基本特征 创建 自动生成行索引 自定义生成行索引 使用 索引与值 基本操作 统计功能  ---- 基本特征 一个表格型的数据结构 含有一组有序的列(类似于index) 大致可看成共享同一个index...的Series集合 创建         DataFrame与Series相比,除了可以每一个键对应许多值之外,还增加了列索引(columns)这一内容,具体内容如下所示: 自动生成行索引         ...DataFrame除了能创建自动生成行索引外,还能自定义生成行索引,代码如下所示:  import pandas as pd import numpy as np data = np.array([(... 6000 使用 索引与值                 我们可以通过一些基本方法来查看DataFrame的行索引、列索引和值,代码如下所示: import pandas as pd import...,但这种方式是直接对原始数据操作,不是很安全,pandas 中可利用 drop()方法删除指定轴上的数据,drop()方法返回一个新的对象,不会直接修改原始数据。

    5.7K20

    合并Pandas的DataFrame方法汇总

    在《跟老齐学Python:数据分析》一书中,对DataFrame对象的各种常用操作都有详细介绍。本文根据书中介绍的内容,并参考其他文献,专门汇总了合并操作的各种方法。...Pandas提供好几种方法和函数来实现合并DataFrame的操作,一般的操作结果是创建一个新的DataFrame,而对原始数据没有任何影响。...当how参数的默认值设置为inner时,将从左DataFrame和右DataFrame的交集生成一个新的DataFrame。...如果设置为 True ,它将忽略原始值并按顺序重新创建索引值 keys:用于设置多级索引,可以将它看作附加在DataFrame左外侧的索引的另一个层级的索引,它可以帮助我们在值不唯一时区分索引 用与 df2...相同的列类型创建一个新的DataFrame,但这个DataFrame包含id006和id007的image_url: df2_addition = pd.DataFrame({'user_id': [

    6.4K10

    Pandas高级教程之:Dataframe的合并

    简介 Pandas提供了很多合并Series和Dataframe的强大的功能,通过这些功能可以方便的进行数据分析。本文将会详细讲解如何使用Pandas来合并Series和Dataframe。...axis指定连接的轴。 join : {‘inner’, ‘outer’}, 连接方式,怎么处理其他轴的index,outer表示合并,inner表示交集。...ignore_index: 忽略原本的index值,使用0,1,… n-1来代替。 copy:是否进行拷贝。 keys:指定最外层的多层次结构的index。...的数据,这时候可以使用combine_first: In [131]: df1 = pd.DataFrame([[np.nan, 3., 5.], [-4.6, np.nan, np.nan],...update: In [134]: df1.update(df2) 本文已收录于 http://www.flydean.com/04-python-pandas-merge/ 最通俗的解读,最深刻的干货

    5.7K00

    pandas | DataFrame中的排序与汇总方法

    今天我们来聊聊如何对一个DataFrame根据我们的需要进行排序以及一些汇总运算的使用方法。...排序 排序是我们一个非常基本的需求,在pandas当中将这个需求进一步细分,细分成了根据索引排序以及根据值排序。我们先来看看Series当中的排序方法。...这两个方法都会返回一个新的Series: 索引排序 对于DataFrame来说也是一样,同样有根据值排序以及根据索引排序这两个功能。...但是由于DataFrame是一个二维的数据,所以在使用上会有些不同。...method的合法参数并不止first这一种,还有一些其他稍微冷门一些的用法,我们一并列出。 如果是DataFrame的话,默认是以行为单位,计算每一行中元素占整体的排名。

    4.9K20

    Python基础 | 为什么需要Pandas的DataFrame类型

    Pandas是我们平时进行数据分析时,经常会使用到的一个库,提供了非常丰富的数据类型和方法,以简化对数据的处理和分析。...上面介绍的这种形式的数据,是一种常见的需要存储和进行处理的一些数据,但是list()和numpy.ndarray()都无法很好的处理这些数据,因此需要一种新的、更加方便的数据类型,而这种数据类型就是pandas...Pandas的DataFrame类型 Pandas是Python开发中常用的第三方库,DataFrame是其中最常用的数据类型,是一种存放数据的容器。...而在python中存放数据常见的有list()以及numpy中功能更加强大的numpy.ndarray(),但是为什么还要使用DataFrame呢?...结语 本文介绍了用Pandas的DataFrame类型来存储电影数据集的数据,并介绍了DataFrame提供的非常方便的数据操作。

    1.1K60
    领券