首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pandas 提速 315 倍!

其次,它使用不透明对象范围(0,len(df))循环,然后再应用apply_tariff()之后,它必须将结果附加到用于创建新DataFrame列的列表中。...接下来,一起看下优化的提速方案。 一、使用 iterrows循环 第一种可以通过pandas引入iterrows方法让效率更高。...pandas的.apply方法接受函数callables并沿DataFrame的轴(所有行或所有列)应用。...那么这个特定的操作就是矢量化操作的一个例子,它是在pandas中执行的最快方法。 但是如何将条件计算应用为pandas中的矢量化运算?...一个技巧是:根据你的条件,选择和分组DataFrame,然后对每个选定的组应用矢量化操作。 在下面代码中,我们将看到如何使用pandas的.isin()方法选择行,然后在矢量化操作中实现新特征的添加。

2.8K20

高效的10个Pandas函数,你都用过吗?

中最主要的数据分析库之一,它提供了非常多的函数、方法,可以高效地处理并分析数据。...Insert Insert用于在DataFrame的指定位置中插入新的数据列。默认情况下新列是添加到末尾的,但可以更改位置参数,将新列添加到任何位置。...,则 loc=0 column: 给插入的列取名,如 column='新的一列' value:新列的值,数字、array、series等都可以 allow_duplicates: 是否允许列名重复,选择...Isin Isin也是一种过滤方法,用于查看某列中是否包含某个字符串,返回值为布尔Series,来表明每一行的情况。...Melt Melt用于将宽表变成窄表,是 pivot透视逆转操作函数,将列名转换为列数据(columns name → column values),重构DataFrame。

4.2K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas图鉴(四):MultiIndex

    你可以在DataFrame从CSV解析出来后指定要包含在索引中的列,也可以直接作为read_csv的参数。...你也可以在事后用append=True将现有的级别追加到MultiIndex中,正如你在下图中看到的那样: 其实更典型的是Pandas,当有一些具有某种属性的对象时,特别是当它们随着时间的推移而演变时...Pandas有很多方法可以用大括号来访问DataFrame的元素,但都不够方便,所以这里推荐采用另一种索引语法: .query方法的小型语言(它是唯一能够做'or'的方法,而不仅仅是'and'): df.query...将MultiIndex转换为flat的索引并将其恢复 方便的查询方法只解决了处理行中MultiIndex的复杂性。...一种方法是将所有不相关的列索引层层叠加到行索引中,进行必要的计算,然后再将它们解叠回来(使用pdi.lock来保持原来的列顺序)。

    62120

    这几个方法颠覆你对Pandas缓慢的观念!

    其次,它使用不透明对象范围(0,len(df))循环,然后在应用apply_tariff()之后,它必须将结果附加到用于创建新DataFrame列的列表中。...Pandas的.apply方法接受函数(callables)并沿DataFrame的轴(所有行或所有列)应用它们。...一个技巧是根据你的条件选择和分组DataFrame,然后对每个选定的组应用矢量化操作。 在下一个示例中,你将看到如何使用Pandas的.isin()方法选择行,然后在向量化操作中实现上面新特征的添加。...Pandas的 HDFStore 类允许你将DataFrame存储在HDF5文件中,以便可以有效地访问它,同时仍保留列类型和其他元数据。...Pandas有很多可选性,几乎总有几种方法可以从A到B。请注意这一点,比较不同方法的执行方式,并选择在项目环境中效果最佳的路线。

    2.9K20

    还在抱怨pandas运行速度慢?这几个方法会颠覆你的看法

    其次,它使用不透明对象范围(0,len(df))循环,然后在应用apply_tariff()之后,它必须将结果附加到用于创建新DataFrame列的列表中。...Pandas的.apply方法接受函数(callables)并沿DataFrame的轴(所有行或所有列)应用它们。...一个技巧是根据你的条件选择和分组DataFrame,然后对每个选定的组应用矢量化操作。 在下一个示例中,你将看到如何使用Pandas的.isin()方法选择行,然后在向量化操作中实现上面新特征的添加。...Pandas的 HDFStore 类允许你将DataFrame存储在HDF5文件中,以便可以有效地访问它,同时仍保留列类型和其他元数据。...Pandas有很多可选性,几乎总有几种方法可以从A到B。请注意这一点,比较不同方法的执行方式,并选择在项目环境中效果最佳的路线。

    3.5K10

    Pandas缺失数据处理

    函数 apply函数可以接收一个自定义函数, 可以将DataFrame的行/列数据传递给自定义函数处理 apply函数类似于编写一个for循环, 遍历行/列的每一个元素,但比使用for循环效率高很多        .../3 df.apply(avg_3_apply) 按一列一列执行结果:(一共两列,所以显示两行结果) 创建一个新的列'new_column',其值为'column1'中每个元素的两倍,当原来的元素大于...10的时候,将新列里面的值赋0: import pandas as pd data = {'column1':[1, 2, 15, 4, 8]} df = pd.DataFrame(data) df[...'new_column'] =df['column1'].apply(lambda x:x*2) # 检查'column1'中的每个元素是否大于10,如果是,则将新列'new_column'中的值赋为...按行 # 可以翻译为:df['new_column']=0 或 row['new_column'] 请创建一个两列的DataFrame数据,自定义一个lambda函数用来两列之和,并将最终的结果添加到新的列

    11310

    【译】Python中的数据清洗 |Pythonic Data Cleaning With NumPy and Pandas(二)

    本文是 使用 Python 进行数据清洗 第二部分翻译,全部翻译的文章内容摘要如下 【译】Python中的数据清洗 |Pythonic Data Cleaning With NumPy and Pandas...我们的数据清洗任务 是把以上不规则的行数据整理为整齐的数据,我们可以看到每行数据除了一些括号外,没有其它的共性特征。 ?...数据清理-增加列.png The applymap() method took each element from the DataFrame, passed it to the function, and...applymap()实际上是一个行遍历的思想,在处理数据时,每一行都可以对应回调函数,自定义来处理数据。...参考资料 [1] Pythonic Data Cleaning With NumPy and Pandas: https://realpython.com/python-data-cleaning-numpy-pandas

    64010

    解决pandas.core.frame.DataFrame格式数据与numpy.ndarray格式数据不一致导致无法运算问题

    然而,有时候我们会遇到DataFrame格式数据与ndarray格式数据不一致导致无法进行运算的问题。本文将介绍一种解决这个问题的方法。...解决方法要解决DataFrame格式数据与ndarray格式数据不一致导致的无法运算问题,我们可以通过将DataFrame的某一列转换为ndarray并重新赋值给新的变量,然后再进行运算。...总结本文介绍了一种解决pandas的DataFrame格式数据与numpy的ndarray格式数据不一致导致无法运算的问题的方法。...然后,我们可以直接对这两个ndarray进行运算,得到每个产品的销售总额。最后,将运算结果添加到DataFrame中的​​Sales Total​​列。...本文介绍了一种解决pandas的DataFrame格式数据与numpy的ndarray格式数据不一致导致无法运算的问题的方法。

    53320

    【如何在 Pandas DataFrame 中插入一列】

    然而,对于新手来说,在DataFrame中插入一列可能是一个令人困惑的问题。在本文中,我们将分享如何解决这个问题的方法,并帮助读者更好地利用Pandas进行数据处理。...为什么要解决在Pandas DataFrame中插入一列的问题? Pandas DataFrame是一种二维表格数据结构,由行和列组成,类似于Excel中的表格。...第一列是 0。 **column:赋予新列的名称。 value:**新列的值数组。 **allow_duplicates:**是否允许新列名匹配现有列名。默认值为假。...不同的插入方法: 在Pandas中,插入列并不仅仅是简单地将数据赋值给一个新列。...通过本文,我们希望您现在对在 Pandas DataFrame 中插入新列的方法有了更深的了解。这项技能是数据科学和分析工作中的一项基本操作,能够使您更高效地处理和定制您的数据。

    1.1K10

    Pandas入门2

    dropna方法可以根据行列中是否有空值进行删除。...这个方法有2个参数: 关键字参数how,可以填入的值为any或all,any表示只要有1个空值则删除该行或该列,all表示要一行全为空值则删除该行。...df[['Mjob','Fjob']].applymap(str.title) Step 7.创建一个名为majority函数,并根据age列数据返回一个布尔值添加到新的数据列,列名为 legal_drinker...Pandas中的时间序列 不管在哪个领域中(如金融学、经济学、生态学、神经科学、物理学等),时间序列数据都是一种重要的结构化数据形式。在多个时间点观察或者测量到的任何事物都是可以形成一段时间序列。...image.png 7.3 Pandas中的时间序列 pandas通常是用于处理成组日期的,不管这个日期是DataFrame的轴索引还是列。to_datetime方法可以解析多种不同的日期表示形式。

    4.2K20

    在NLP项目中使用Hugging Face的Datasets 库

    可以看到,行切片给出了一个字典,而列切片给出了一个列表。getitem方法根据查询的类型返回不同的格式。...数据集操作 添加/删除一个新列 添加一个名为“new_column”的列,条目为“foo”。...我们可以将这个函数应用于一个例子,甚至一批例子,甚至生成新的行或列。...除此之外,您还可以批量处理数据。 我们总是希望我们的数据集是一个格式良好的表格,就像我们看到一个pandas dataframe一样。我们可以将数据集转换为相同的格式。...这就是本文的全部内容。从这里开始,您可以根据项目需求对数据进行预处理,并构建模型或创建良好的可视化效果。不可能在一篇文章中涵盖所有内容。然而,通过阅读本文,您可以了解如何使用数据集库中的可用方法。

    3.1K40

    超强Pandas循环提速攻略

    标准循环 Dataframe是Pandas对象,具有行和列。如果使用循环,你将遍历整个对象。Python不能利用任何内置函数,而且速度非常慢。...我们创建了一个包含65列和1140行的Dataframe。它包含了2016-2019赛季的足球比赛结果。我们希望创建一个新列,用于标注某个特定球队是否打了平局。...我们直接将Pandas Series传递给我们的功能,这使我们获得了巨大的速度提升。 Nump Vectorization:快71803倍 在前面的示例中,我们将Pandas Series传递给函数。...当数据元素被线性地排列和访问时,例如遍历一维数组中的元素,发生顺序局部性,即空间局部性的特殊情况。 局部性只是计算机系统中发生的一种可预测的行为。...代码运行了0.305毫秒,比开始时使用的标准循环快了 71803倍! 总结 我们比较了五种不同的方法,并根据一些计算将一个新列添加到我们的DataFrame中。

    3.9K51

    Pandas0.25来了,别错过这10大好用的新功能

    下一版 pandas 将只支持 Python 3.6 及以上版本了,这是因为 f-strings 的缘故吗?嘿嘿。 ? 彻底去掉了 Panel,N 维数据结构以后要用 xarray 了。...好在 pandas 提供了更简单的写法,只需传递一个 Tuple 就可以了,Tuple 里的第一个元素是指定列,第二个元素是聚合函数,看看下面的代码,是不是少敲了好多下键盘: animals.groupby...Pandas 提供了一种叫 pandas.NameAgg 的命名元组(namedtuple),但如上面的代码所示,直接使用 Tuple 也没问题。 这两段代码的效果是一样的,结果都如下图所示。 ?...增加 explode() 方法,把 list “炸”成行 Series 与 DataFrame 增加了 explode() 方法,把 list 形式的值转换为单独的行。...好了,本文就先介绍 pandas 0.25 的这些改变,其实,0.25 还包括了很多优化,比如,对 DataFrame GroupBy 后 ffill, bfill 方法的调整,对类别型数据的 argsort

    2.2K30

    几个高效Pandas函数

    Pandas是python中最主要的数据分析库之一,它提供了非常多的函数、方法,可以高效地处理并分析数据。让pandas如此受欢迎的原因是它简洁、灵活、功能强大的语法。...Insert Insert用于在DataFrame的指定位置中插入新的数据列。默认情况下新列是添加到末尾的,但可以更改位置参数,将新列添加到任何位置。...,则 loc=0 column: 给插入的列取名,如 column='新的一列' value:新列的值,数字、array、series等都可以 allow_duplicates: 是否允许列名重复,选择...Isin Isin也是一种过滤方法,用于查看某列中是否包含某个字符串,返回值为布尔Series,来表明每一行的情况。...Melt Melt用于将宽表变成窄表,是 pivot透视逆转操作函数,将列名转换为列数据(columns name → column values),重构DataFrame。

    1.6K60

    爱数课实验 | 第八期-新加坡房价预测模型构建

    /dataset/listings.csv') 使用Pandas中的read_csv()函数可以读取csv文件,结果会保存为一个DataFrame或Series对象,通过调用DataFrame或Series...print(flat_data.shape) flat_data.head() (7907, 16) 通过调用DataFrame对象的info()方法打印DataFrame对象的摘要,包括列的数据类型...在建模前进行数据预处理时,可以删除上次评论时间last_review这一列,对平均每月的评论数reviews_per_month缺失值用0进行填充。 2....数据预处理 3.1 删除不需要的列 通过调用DataFrame对象的drop()方法,并设置axis=1,删除房间编号id、房间名称name、房东编号host_id等列。...LightGBM模型构建 4.1 对数变换 对数变换是一种常用的特征工程方法,一般对于数值大于0的长尾分布数据,可以采取对数变换的方法来转换特征值,整体上减缓长尾分布这种极偏的分布状态,为低值这一端争取更多的空间

    1.1K11
    领券