人生苦短,快学Python! VLOOKUP函数大家应该都很熟悉吧,它可以帮我们根据指定的条件快速查找匹配出相应的结果,通常被用于核对、匹配多个表格之间的数据。...在sheet2中,一列是员工姓名,一列是他们的对应工资。 vlookup函数就是在表格或数值数组的首列查找指定的数值,并由此返回表格或数组当前行中指定列处的数值。...一般是匹配条件容易记混,如果为FALSE或0,则返回精确匹配,如果找不到,则返回错误值 #N/A。如果 range_lookup 为TRUE或1,函数 VLOOKUP 将查找近似匹配值。...经过openpyxl一番操作,如同庄周带净化。 Pandas 在这数据爆炸的时代,我们无时无刻不在和数据打交道。...那么Excel中的这种常用函数,Pandas模块自然也是可以轻松搞定了。 ▲《快学Python:自动化办公轻松实战》 在 Pandas 模块中,调用merge()方法,可以帮助我们实现数据连接。
、数据分析和数据可视化全套流程操作 pandas主要面向数据处理与分析,主要具有以下功能特色: 按索引匹配的广播机制,这里的广播机制与numpy广播机制还有很大不同 便捷的数据读写操作,相比于numpy...或字典(用于重命名行标签和列标签) reindex,接收一个新的序列与已有标签列匹配,当原标签列中不存在相应信息时,填充NAN或者可选的填充值 set_index/reset_index,互为逆操作,...isin/notin,条件范围查询,即根据特定列值是否存在于指定列表返回相应的结果 where,仍然是执行条件查询,但会返回全部结果,只是将不满足匹配条件的结果赋值为NaN或其他指定值,可用于筛选或屏蔽值...,可通过axis参数设置是按行删除还是按列删除 替换,replace,非常强大的功能,对series或dataframe中每个元素执行按条件替换操作,还可开启正则表达式功能 2 数值计算 由于pandas...广播机制,即当维度或形状不匹配时,会按一定条件广播后计算。由于pandas是带标签的数组,所以在广播过程中会自动按标签匹配进行广播,而非类似numpy那种纯粹按顺序进行广播。
选自TowardsDataScience 作者:Kunal Dhariwal 机器之心编译 参与:Jamin、杜伟、张倩 我们都知道,Numpy 是 Python 环境下的扩展程序库,支持大量的维度数组和矩阵运算...;Pandas 也是 Python 环境下的数据操作和分析软件包,以及强大的数据分析库。...二者在日常的数据分析中都发挥着重要作用,如果没有 Numpy 和 Pandas 的支持,数据分析将变得异常困难。但有时我们需要加快数据分析的速度,有什么办法可以帮助到我们吗?...Numpy 是用于科学计算的 Python 语言扩展包,通常包含强大的 N 维数组对象、复杂函数、用于整合 C/C++和 Fortran 代码的工具以及有用的线性代数、傅里叶变换和随机数生成能力。...如果在一个公差范围内(within a tolerance)两个数组不等同,则 allclose() 返回 False。该函数对于检查两个数组是否相似非常有用。
我们都知道,Numpy 是 Python 环境下的扩展程序库,支持大量的维度数组和矩阵运算;Pandas 也是 Python 环境下的数据操作和分析软件包,以及强大的数据分析库。...二者在日常的数据分析中都发挥着重要作用,如果没有 Numpy 和 Pandas 的支持,数据分析将变得异常困难。但有时我们需要加快数据分析的速度,有什么办法可以帮助到我们吗?...Numpy 是用于科学计算的 Python 语言扩展包,通常包含强大的 N 维数组对象、复杂函数、用于整合 C/C++和 Fortran 代码的工具以及有用的线性代数、傅里叶变换和随机数生成能力。...如果在一个公差范围内(within a tolerance)两个数组不等同,则 allclose() 返回 False。该函数对于检查两个数组是否相似非常有用。...Pandas 适用于以下各类数据: 具有异构类型列的表格数据,如 SQL 表或 Excel 表; 有序和无序 (不一定是固定频率) 的时间序列数据; 带有行/列标签的任意矩阵数据(同构类型或者是异构类型
我们都知道,Numpy 是 Python 环境下的扩展程序库,支持大量的维度数组和矩阵运算;Pandas 也是 Python 环境下的数据操作和分析软件包,以及强大的数据分析库。...二者在日常的数据分析中都发挥着重要作用,如果没有 Numpy 和 Pandas 的支持,数据分析将变得异常困难。但有时我们需要加快数据分析的速度,有什么办法可以帮助到我们吗?...Numpy 是用于科学计算的 Python 语言扩展包,通常包含强大的 N 维数组对象、复杂函数、用于整合 C/C++和 Fortran 代码的工具以及有用的线性代数、傅里叶变换和随机数生成能力。...如果在一个公差范围内(within a tolerance)两个数组不等同,则 allclose() 返回 False。该函数对于检查两个数组是否相似非常有用。...Pandas数据统计包的6种高效函数 Pandas 也是一个 Python 包,它提供了快速、灵活以及具有显著表达能力的数据结构,旨在使处理结构化 (表格化、多维、异构) 和时间序列数据变得既简单又直观
如果已经安装Visual Studio Code,则选择IDE最为简单。如果没有,建议新手使用PyCharm,入门简单且界面直观。接下来教程以 PyCharm为例。...如果收到消息表明版本不匹配,重新下载正确的webdriver可执行文件。 确定对象,建立Lists Python允许程序员在不指定确切类型的情况下设计对象。只需键入对象的标题并指定一个值即可。...pandas可以创建多列,但目前没有足够的列表来利用这些参数。 第二条语句将变量“df”的数据移动到特定的文件类型(在本例中为“ csv”)。第一个参数为即将创建的文件和扩展名分配名称。...因为“pandas”输出的文件不带扩展名,所以需要手动添加扩展名。“index”可用于为列分配特定的起始编号。“encoding”用于以特定格式保存数据。UTF-已经几乎适用于所有情况。...现在,有第三个方法: 更多5.png 列表的长度不一,则不会匹配数据,如果需要两个数据点,则创建两个序列是最简单的解决方法。
当然有可能 ,关键在于你如何操作! 如果在数据上使用for循环,则完成所需的时间将与数据的大小成比例。但是还有另一种方法可以在很短的时间内得到相同的结果,那就是向量化。...这是一个非常基本的条件逻辑,我们需要为lead status创建一个新列。 我们使用Pandas的优化循环函数apply(),但它对我们来说太慢了。...1、字符串 假设你需要在一系列文本中搜索特定的模式,如果匹配,则创建一个新的series。这是一种.apply方法。...Dask是在Pandas API中工作的一个不错的选择。能够跨集群扩展到TB级的数据,或者甚至能够更有效地在一台机器上处理多核数据。 6 总结 向量化可以极大地加快速度!...np.where →一个逻辑条件 np.select →2+逻辑条件 如果你正在处理字符串/正则表达式函数,那么最好还是使用Python。
我将演示支持xls和xlsx文件扩展名的Pandas的read_excel方法。read_csv与read_excel相同,就不做深入讨论了,但我会分享一个例子。...2、一些重要的Pandas read_excel选项 ? 如果默认使用本地文件的路径,用“\”表示,接受用“/”表示,更改斜杠可以将文件添加到Python文件所在的文件夹中。...使用index_col参数可以操作数据框中的索引列,如果将值0设置为none,它将使用第一列作为index。 ?...8、筛选不在列表或Excel中的值 ? 9、用多个条件筛选多列数据 输入应为列一个表,此方法相当于excel中的高级过滤器功能: ? 10、根据数字条件过滤 ?...有四种合并选项: left——使用左侧DataFrame中的共享列并匹配右侧DataFrame,N/A为NaN; right——使用右侧DataFrame中的共享列并匹配左侧DataFrame,N/A为
在 Pandas 中,如果未指定索引,则默认使用 RangeIndex(第一行 = 0,第二行 = 1,依此类推),类似于电子表格中的行标题/数字。...数据操作 1. 列操作 在电子表格中,公式通常在单个单元格中创建,然后拖入其他单元格以计算其他列的公式。在 Pandas 中,您可以直接对整列进行操作。...如果找到子字符串,则该方法返回其位置。如果未找到,则返回 -1。请记住,Python 索引是从零开始的。 tips["sex"].str.find("ale") 结果如下: 3....; 如果匹配多行,则每个匹配都会有一行,而不仅仅是第一行; 它将包括查找表中的所有列,而不仅仅是单个指定的列; 它支持更复杂的连接操作; 其他注意事项 1....查找和替换 Excel 查找对话框将您带到匹配的单元格。在 Pandas 中,这个操作一般是通过条件表达式一次对整个列或 DataFrame 完成。
Mito是Jupyter notebook的一个插件,作用是编辑电子表格,并在编辑表格(带格式转换功能)时,可以生成相对应的Python代码。 下面是具体的操作演示,感受一下它的强大! ?...扩展管理器。...合并数据集 Mito的合并功能可用于将数据集水平组合在一起。通过查找两个表关键列的匹配项,然后将这些匹配项数据组合到一行中。 首先,选择要合并在一起的两个Mito工作表。其次,选择合并的键。...最后,选择保留哪些列。 ? 数据透视表 首先,选择一个关键字对数据分组。然后,如果想进一步将组分层为单个单元格,继续选择列。最后,选择聚合的列和方法。 ?...筛选 Mito通过组合过滤器和过滤器组来提供强大的过滤功能。 过滤器是单个条件,对于该列中的每个单元格,其评估结果为true或false。 过滤器组是结合了布尔运算符的过滤器聚合。 ? 排序 ?
前言 Excel与Python都是数据分析中常用的工具,本文将使用动态图(Excel)+代码(Python)的方式来演示这两种工具是如何实现数据的读取、生成、计算、修改、统计、抽样、查找、可视化、存储等数据处理中的常用操作...Pandas 在Pandas中,可直接对数据框进行条件筛选,例如同样进行单个条件(薪资大于5000)的筛选可以使用df[df['薪资水平']>5000],如果使用多个条件的筛选只需要使用&(并)与|(或...Pandas 在pandas中,如果不借助自定义函数的话,我们可以使用cut方法来实现同样操作 bins = [0,10000,max(df['薪资水平'])] group_names = ['低','...结束语 以上就是使用Pandas来演示如何实现Excel中的常用操作的全部过程,其实可以发现Excel的优点就是大多由交互式的点击完成数据处理,而Pandas则完全依赖于代码,对于有些操作比如数据透视表...,用Excel制作更加方便,而有些操作比如数据的分组、计算等,因Pandas可以与NumPy等其他优秀的Python库结合而显得更加强大,所以我们在处理数据时也需要正确选择使用的工具!
后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 Excel 中除了 Vlookup 函数,一系列条件统计函数(sumif、countif、maxif)...xxxifs 类函数即可 在 pandas ,不会有啥条件统计函数的,因为这就是先筛选,再统计: - 行2:得到 性别 列是女性的 bool 列 - 行3:df[cond] 就是女性的记录,简单通过...fare.mean() 恰好反映"票价的平均" 同样,简单分组即可一次获得所有分组的统计信息: - 按 sex 分组,求 票价 的 平均 需求3:非常规匹配 上面的条件都是完全符合,有时候我们需要统计有包含关系的条件...用于文本匹配的还有 match 方法,此系列文章不再深入讲解了。...更多高级应用方法,请关注 pandas 专栏 [带你玩转Python数据处理—pandas] 总结 本文重点: - 构造 bool 列,是核心知识点 - Series.str.contains 用于文本规则条件匹配
pandas是基于numpy库的数组结构上构建的,并且它的很多操作都是(通过numpy或者pandas自身由Cpython实现并编译成C的扩展模块)在C语言中实现的。...这个特定的操作就是矢量化操作的一个例子,它是在Pandas中执行的最快方法。 但是如何将条件计算应用为Pandas中的矢量化运算?...如果我们有更精细的时隙范围,你可能会争辩说这个解决方案是不可扩展的。...如果你要另存为CSV,则只会丢失datetimes对象,并且在再次访问时必须重新处理它。 Pandas有一个内置的解决方案,它使用 HDF5,这是一种专门用于存储表格数据阵列的高性能存储格式。...如果你的代码是许多for循环,那么它可能更适合使用本机Python数据结构,因为Pandas会带来很多开销。 如果你有更复杂的操作,其中矢量化根本不可能或太难以有效地解决,请使用.apply方法。
Pandas 是一个为数据操作和分析设计的 Python 开源库。它提供了易于使用的数据结构和数据分析工具,能够高效地处理大规模数据。...__version__)" 如果安装成功,您将看到 Pandas 的版本号,如: 1.5.x ⚙️ 3....按列选择 # 选择单列 print(df['Name']) # 选择多列 print(df[['Name', 'Age']]) 按条件过滤 # 选择年龄大于30的行 filtered_df = df...合并数据时的匹配问题 在合并多个 DataFrame 时,可能会遇到匹配错误的问题。...result = pd.merge(df1, df2, on='key_column', how='inner') 检查匹配的键是否一致:合并前确保键列的名称和数据类型一致。
IF 条件判断 使用if语句,对条件进行判断 true则执行代码块缩进语句 false则不执行代码块缩进语句,如果有else 或 elif 则进入相应的规则中执行 age = 20 if age...如果要针对某个变量匹配若干种情况,可以使用match语句。...将match理解为变相的watch判断即可 case _: 可以理解为 default: 匹配列表 match语句还可以匹配列表,功能非常强大。...并且必须满足判断条件才会执行对应的case for in 在Python中用的多的是for…in循环,依次将list中的元素迭代输出 names = ['Michael', 'Bob', 'Tracy...Python的函数返回多值其实就是返回一个tuple,但写起来更方便。
后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 Excel 中除了 Vlookup 函数,一系列条件统计函数(sumif、countif、maxif)...xxxifs 类函数即可 在 pandas ,不会有啥条件统计函数的,因为这就是先筛选,再统计: - 行2:得到 性别 列是女性的 bool 列 - 行3:df[cond] 就是女性的记录,简单通过...fare.mean() 恰好反映"票价的平均" 同样,简单分组即可一次获得所有分组的统计信息: - 按 sex 分组,求 票价 的 平均 需求3:非常规匹配 上面的条件都是完全符合,有时候我们需要统计有包含关系的条件...用于文本匹配的还有 match 方法,此系列文章不再深入讲解了。...更多高级应用方法,请关注 pandas 专栏 [带你玩转Python数据处理—pandas]
后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 匹配查找是数据处理中经常出现的场景,如果懂点 Excel 的,基本都会 vlookup 这公式,今天我们来看看...本文结构: - 正常匹配(自带懒人模式) - 当数据源关键列有重复时,pandas 提醒模式(Excel 中你不会知道数据有问题) - 有时候需求真的有重复数据,看看怎么匹配重复中指定条件的记录 - DIY...pandas 会自动识别匹配表与数据源的列,有交集的自动识别为匹配依据 看看,假如"待匹配"有 部门 与 收入,反过来找 名字 与性别: - 代码其实没有变化,懒人模式嘛,有哪些列可以在数据源那边找到...','m:1','m:m' 身不由己 有时候需求就是要在重复数据中匹配某一条符合条件的记录。..."匹配收入最小的人员信息": 自定义 如果不希望每次都写 merge 的各种参数,我们也可以自定义一个 vlookup 方法,把 merge 调用细节隐藏起来。 用上一个例子的数据。