首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

在 Pandas 中,如果未指定索引,则默认使用 RangeIndex(第一行 = 0,第二行 = 1,依此类推),类似于电子表格中的行标题/数字。...相同的操作在下面的Pandas中表示。...如果找到子字符串,则该方法返回其位置。如果未找到,则返回 -1。请记住,Python 索引是从零开始的。 tips["sex"].str.find("ale") 结果如下: 3....在 Pandas 中提取单词最简单的方法是用空格分割字符串,然后按索引引用单词。请注意,如果您需要,还有更强大的方法。...,则每个匹配都会有一行,而不仅仅是第一行; 它将包括查找表中的所有列,而不仅仅是单个指定的列; 它支持更复杂的连接操作; 其他注意事项 1.

19.6K20

Pandas入门2

image.png 5.3 DataFrame和Series之间的运算 默认情况下,DataFrame和Series之间的算术运算会将Series的索引匹配到DataFram的列,然后沿着行一直向下广播...image.png .读者可以复制下面代码运行,然后查看结果是否相同: from pandas import Series,DataFrame import numpy as np df = DataFrame...image.png .读者可以复制下面代码运行,然后查看结果是否相同: from pandas import Series,DataFrame import numpy as np df = DataFrame...这个方法有2个参数: 关键字参数how,可以填入的值为any或all,any表示只要有1个空值则删除该行或该列,all表示要一行全为空值则删除该行。...image.png 7.3 Pandas中的时间序列 pandas通常是用于处理成组日期的,不管这个日期是DataFrame的轴索引还是列。to_datetime方法可以解析多种不同的日期表示形式。

4.2K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    对比Excel,Python pandas在数据框架中插入行

    标签:python与Excel,pandas Excel中的一项常见任务是在工作表中插入行,这可以通过Excel功能区命令或者右键快捷菜单或者快捷键来完成。...在Python中处理数据时,也可以将行插入到等效的数据框架中。 将行添加到数据框架中 pandas没有“插入”功能,我们不能在想象的工作表中右键单击一行,然后选择.insert()。...现在,如果想向其中添加一行,可以使用append(),它接受下列项目之一:数据框架、序列或字典。为了更好地说明,让我们添加值为100的一行。 图2 注意,新添加的行的索引值为0,这是重复的?...模拟如何在Excel中插入行 在Excel中,当我们向表中插入一行时,实际上只是将所有内容下移一行(插入多行相同)。从技术上讲,我们将原始表“拆分”为两部分,然后将新行放在它们之间。...图5:在pandas中插入行的图形化演示 我们可以模仿上述技术,并在Python中执行相同的“插入”操作。回到我们假设的要求:在第三行(即索引2)之后插入一行。

    5.5K20

    Python那些熟悉又陌生的函数,每次看别人用得很溜,自己却不行?

    一行代码创建列表 每次需要定义某种列表时都要编写一个for循环,这是一件乏味的事情,幸运的是Python有一种内置的方法可以在一行代码中解决这个问题。...# np.linspace(start, stop, num) np.linspace(2.0, 3.0, num=5) Axis真正含义是什么 当您在pandas中删除一列或在NumPy矩阵中添加值时...根据上面的推导,如果要处理列,可以将轴设置为1,如果要处理行,可以将轴设置为0。但这是为什么呢?...如果您考虑一下如何在Python中对其进行索引,行是0,列是1,这与我们声明axis值的方式非常相似。疯狂的,对吗?...如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同,利用 * 号操作符,可以将元组解压为列表。 zip的语法: zip([iterable, ...])

    1.3K10

    Pandas 数据分析技巧与诀窍

    Pandas是一个建立在NumPy之上的开源Python库。Pandas可能是Python中最流行的数据分析库。它允许你做快速分析,数据清洗和准备。...它是一个轻量级的、纯python库,用于生成随机有用的条目(例如姓名、地址、信用卡号码、日期、时间、公司名称、职位名称、车牌号码等),并将它们保存在pandas dataframe对象中、数据库文件中的...在不知道索引的情况下检索数据: 通常使用大量数据,几乎不可能知道每一行的索引。这个方法可以帮你完成任务。因此,在因此,在“数据”数据框中,我们正在搜索user_id等于1的一行的索引。...获取列的所有唯一属性值: 假设我们有一个整数属性user_id: listOfUniqueUserIDs = data[‘user_id’].unique() 然后你可以迭代这个列表,或者用它做任何你想做的事情...当然,如果愿意的话,您可以让它们保持原样,但是如果您想添加值来代替空值,您必须首先声明哪些值将被放入哪些属性中(对于其空值)。 所以这里我们有两列,分别称为“标签”和“难度”。

    11.5K40

    esproc vs python 4

    A4:按照月份m进行排序 A5:新增一列,如果月份等于前一行的月份,则计算增长比并赋值,否则赋值null,将该列命名为yoy。...df.shift(1)表示将原来的df下一行,即相对于当前行为上一行,给该数组赋值为增长比(当前行减上一行的值除以上一行的值),由于月份不同,所以将上一行与该行相同的月份赋值为nan,最后将该数组赋值给...创建一个循环,开始将数据中的第一个name的值赋值给name_rec,然后下一次循环,如果name_rec相同,则继续。...直到不相同了,取start~i-1位置的date的值,第0个赋值给begin,倒数第一个赋值给end,将name_rec,begin,end三个值放入初始化的duty_list中,然后将start赋值为...另外python中的merge函数不支持差集计算(或许其他函数支持),造成在第四例中特别麻烦。python pandas的dataframe结构是按列进行存储的,按行循环时就显得特别麻烦。

    1.9K10

    Pandas 2.2 中文官方教程和指南(十·二)

    参数dropna将从输入的DataFrame中删除行,以确保表同步。这意味着如果要写入的表中的一行完全由np.nan组成,那么该行将从所有表中删除。...在删除行时,重要的是要了解PyTables通过擦除行然后移动后续数据来删除行。因此,删除操作可能是一个非常昂贵的操作,具体取决于数据的方向。...默认行为是推断列名:如果没有传递名称,则行为与`header=0`相同,并且列名从文件的第一行推断出来,如果显式传递了列名,则行为与`header=None`相同。...=0相同,并且列名从文件的第一行开始推断,如果显式传递列名,则行为与header=None相同。...如果尝试解析日期字符串列,pandas 将尝试从第一个非 NaN 元素猜测格式,然后使用该格式解析列的其余部分。

    35100

    pandas

    pandas中,从0开始行列索引 3.pandas 时间序列之pd.date_range() pd.date_range(python start=None,#开始时间 end=None...也就是列头 读写文件注意 df.to_excel(writer, sheet_name='逐日流量', index=False) # header = 0 不要最顶上一行 pandas生成日期去掉时分秒...df.to_excel("dates.xlsx") 向pandas中插入数据 如果想忽略行索引插入,又不想缺失数据与添加NaN值,建议使用 df['column_name'].values得出的是...添加索引列名称 baidu.index.name = "列名称" pandas删除数据 用drop()或者del(),drop()可以不会对原数据产生影响(可以调);del()会删除原始数据 drop(..._append(temp, ignore_index=True) pandas数据转置 与矩阵相同,在 Pandas 中,我们可以使用 .transpose() 方法或 .T 属性来转置 我们的DataFrame

    13010

    Pandas库

    Series: Series是一种一维的数据结构,类似于Python中的基本数据结构list,但区别在于Series只允许存储相同的数据类型。...在Pandas中实现高效的数据清洗和预处理,可以通过以下步骤和方法来完成: 处理空值: 使用dropna()函数删除含有缺失值的行或列。 使用fillna()函数用指定值填充缺失值。...处理重复数据: 使用duplicated()方法检测重复行,并使用drop_duplicates()方法删除重复行。 异常值处理: 使用箱线图(Boxplot)识别并处理异常值。...统一数据格式: 确保所有数据列具有相同的格式,例如统一日期格式、货币格式等。 数据加载与初步探索: 使用read_csv()、read_excel()等函数加载数据。...Pandas提供了强大的日期时间处理功能,可以方便地从日期列中提取这些特征。

    8410

    Pandas 2.2 中文官方教程和指南(十·一)

    默认行为是推断列名:如果没有传递名称,则行为与 header=0 相同,并且列名从文件的第一行推断出来,如果显式传递列名,则行为与 header=None 相同。...如果列标题行中的字段数等于数据文件主体中的字段数,则使用默认索引。如果大于此数,则使用前几列作为索引,以使数据主体中的剩余字段数等于标题中的字段数。 在标题之后的第一行用于确定要放入索引的列数。...=0相同,并且列名是从文件的第一行非空行推断出来的,如果显式传递了列名,则行为与header=None相同。...如果尝试解析日期字符串列,pandas 将尝试从第一个非 NaN 元素猜测格式,然后使用该格式解析列的其余部分。...在概念上,`table`的形状非常类似于 DataFrame,具有行和列。`table`可以在相同或其他会话中追加。此外,支持删除和查询类型操作。

    35000

    Pandas 2.2 中文官方教程和指南(四)

    如果找到子字符串,则该方法返回其位置。如果未找到,则返回-1。请记住,Python 索引是从零开始的。...在 pandas 中,如果没有指定索引,则默认使用 RangeIndex(第一行 = 0,第二行 = 1,依此类推),类似于电子表格中的行标题/行号。...在 pandas 中,如果未指定索引,则默认使用RangeIndex(第一行= 0,第二行= 1,依此类推),类似于电子表格中的行标题/数字。...如果找到子字符串,则该方法返回其位置。如果未找到,则返回-1。请记住,Python 索引是从零开始的。...如果找到子字符串,则该方法返回其位置。如果未找到,则返回-1。请记住,Python 索引是从零开始的。

    31710

    Python批量处理Excel数据后,导入SQL Server

    xlrd xlwt sqlalchemy:可以将关系数据库的表结构映射到对象上,然后通过处理对象来处理数据库内容; pymssql:python连接sqlserver数据库的驱动程序,也可以直接使用其连接数据库后进行读写操作...import create_engine import pymssql 2.3 读取excel数据 读取数据比较简单,直接调用pandas的read_excel函数即可,如果文件有什么特殊格式,比如编码...首先我们要判断空值,然后设置日期天数计算起始时间,利用datetime模块的timedelta函数将时间天数转变成时间差,然后直接与起始日期进行运算即可得出其代表的日期。...我的想法是,首先调用pandas的sort_values函数将所有数据根据日期列进行升序排序,然后,调用drop_duplicates函数指定按SOID列进行去重,并指定keep值为last,表示重复数据中保留最后一行数据...保证留下的日期是最近的 data.sort_values(by=['Docket Rec.Date & Time'], inplace=True) # 按 SOID 删除重复行

    4.7K30

    超强Python『向量化』数据处理提速攻略

    如果在数据上使用for循环,则完成所需的时间将与数据的大小成比例。但是还有另一种方法可以在很短的时间内得到相同的结果,那就是向量化。...代码如下: 如果添加了.values: 4 更复杂的 有时必须使用字符串,有条件地从字典中查找内容,比较日期,有时甚至需要比较其他行的值。我们来看看!...1、字符串 假设你需要在一系列文本中搜索特定的模式,如果匹配,则创建一个新的series。这是一种.apply方法。...为了解决这个问题,我们对Pandas中的一个series使用.shift()将前一行移到相同的级别。一旦它们被转移到相同的级别,我就可以使用np.select()执行相同的条件向量化方法了!...因此,如果你有一个4核的i7,你可以将你的数据集分成4块,将你的函数应用到每一块,然后将结果合并在一起。注意:这不是一个很好的选择! Dask是在Pandas API中工作的一个不错的选择。

    6.8K41

    Pandas光速入门-一文掌握数据操作

    对了,与Python取自蟒蛇不同,Pandas取自Panel Data & Python Data Analysis(面板数据与Python 数据分析),而不是熊猫(doge)。...Python环境搭建-从安装到Hello World 安装 ---- 如果使用pip安装: pip install pandas 如果使用conda安装: conda install pandas 如果使用的是...然后可以对分组进行相关操作,如求和、平均数、最小最大值等等。...DataFrame.dropna(axis, how, thresh, subset, inplace)其中axis默认为0,表示逢空值删除整行,置为1则删除整列;how默认为 ‘any’ 如果一行(或列...)有任何一个 NA 就去掉整行,置为’all’则 一行(或列)都是 NA 才去掉这整行;subset:指定要检查的列;inplace默认False,表示返回一个新的DataFrame,否则返回None并覆盖原数据

    2K40

    Pandas知识点-索引和切片操作

    索引和切片操作是最基本最常用的数据处理操作,Pandas中的索引和切片操作基于Python的语言特性,支持类似于numpy中的操作,也可以使用行标签、列标签以及行标签与列标签的组合来进行索引和切片操作...为了避免数据量太大,只取了前5行数据。查看读取的数据,列还是很多,为了让数据再精简一点,接下来将后面几列删除。默认的行索引是数值索引,为了方便后面演示索引操作,设置日期为索引。 ?...在Pandas中,取数据的逻辑通常是先获取某一列数据,然后再取这列数据中的某个数据,所以默认采用了“先列后行”的方式,如果顺序反了会报错。 ?...使用iloc进行切片操作时,切片规则与Python基本的切片规则相同,传入的切片索引是左闭右开的(包含起始值,不包含结束值)。 ?...以上就是Pandas中的索引和切片基本操作介绍,如果需要获取数据和代码,可以点击关注公众号“Python碎片”,然后在后台回复“pandas03”关键字获取本文代码和数据。

    2.3K20

    没错,这篇文章教你妙用Pandas轻松处理大规模数据

    如果读者想亲自动手操作,可下载网站上的数据实践下:https://data.world/dataquest/mlb-game-logs 首先让我们导入数据,看看前五行: import pandas as...这两种类型具有相同的存储容量,但如果只存储正数,无符号整数显然能够让我们更高效地存储只包含正值的列。...当每个指针占用一字节的内存时,每个字符的字符串值占用的内存量与 Python 中单独存储时相同。...你可以看到,存储在 Pandas 中的字符串的大小与作为 Python 中单独字符串的大小相同。 使用分类来优化对象类型 Pandas 在 0.15版引入了 Categoricals (分类)。...因为日期列需要单独对待,因此我们先要删除这一列。 现在,我们可以使用字典、以及几个日期的参数,通过几行代码,以正确的类型读取日期数据。

    3.7K40

    嘀~正则表达式快速上手指南(下篇)

    然后,在将字符串分配给变量前,我们调用两次了 re 模块中的re.sub() 函数。首先,通过用空字符“”代替:\s* ,删除冒号及冒号与姓名之间的任何空格字符。...然后删除姓名另一侧的空格字符和角括号,再次使用空字符进行替换。最终,将字符串分配给 sender_name并添加到字典中。 让我们检查下结果。 ? 非常棒!...然后我们将匹配对象转换为字符串并添加至字典中去。 ? 因为From: 和 To: 字段具有相同的结构,因此我们可以对两者使用相同的代码,但对其他字段来说,我们需要定制稍微不同的代码。...获取邮件的日期 现在让我们来获取邮件的发送日期。 ? 我们获取的Date:字段的代码与From:及To:字段的代码相同。...接下来,我们做和之前相同的 None 值检查。 ? 如果 date 不为 None ,我们就把它从这个匹配对象转换成一个字符串,然后赋值给变量 date_sent,再将其键值添加到字典中。

    4K10

    python数据分析——数据预处理

    axis:指定删除行还是删除列。默认为0,表示删除行;1表示删除列。 index:要删除的行的标签列表或单个标签。与labels参数功能相同,只是在不指定axis的情况下使用。...如果同时指定了labels和index,则labels参数优先生效。 columns:要删除的列的标签列表或单个标签。与labels参数功能相同,只是在axis=1的情况下使用。...如果为True,则原地修改DataFrame,即不会返回新的DataFrame;如果为False(默认值),则返回一个新的DataFrame。 errors:指定如何处理未找到要删除的标签。...axis:指定删除行还是删除列。默认为0,表示删除行;1表示删除列。 index:要删除的行的标签列表或单个标签。与labels参数功能相同,只是在不指定axis的情况下使用。...如果同时指定了labels和index,则labels参数优先生效。 columns:要删除的列的标签列表或单个标签。与labels参数功能相同,只是在axis=1的情况下使用。

    8010
    领券