首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

【Python量化投资】基于技术分析研究股票市场

一 金融专业人士以及对金融感兴趣的业余人士感兴趣的一类就是历史价格进行的技术分析。维基百科中定义如下,金融学中,技术分析是通过对过去市场数据(主要是价格和成交量)的研究预测价格方向的证券分析方法。 下面,我们着重对事后验证过去市场数据的研究,而不是过多低关注对未来股价变动的预测。我们选取的研究目标是标准普尔(S&P)500指数,这是美国股票市场有代表性的指标,包括了许多著名公司的股票,代表着高额的市场资本,而且,该指数也具有高流动性的期货和期权市场。 二 我们将从Web数据来源读取历史指数水平信息,并未一个

09

利用显著-偏置卷积神经网络处理混频时间序列

显著-偏置卷积神经网络简介 金融时间序列通常通常包含多个维度,不同维度数据的采样频率也不一致。例如螺纹钢研究员通常关心螺纹钢的因素有日频更新的现货螺纹钢价格,周频更新的螺纹钢库存,高炉开工率和线螺采购量,而月频更新的则有商品房销售面积等。如果其中某些可观测因子发生了变化,投资者对未来螺纹钢期货涨跌的预期也应发生变化,但是如何处理这些不同频率的数据是量化模型的一大难题。一种比较简单直接的方法就是降低数据的采样频率,例如把日频数据统一为周频(甚至更低如月频),再基于周频数据进行预测。但这种方法的缺点也很明显,期

05
领券