要在TensorFlow 2.0 C++中加载预训练模型,您需要遵循以下步骤:
tensorflowjs_converter
工具将模型转换为TensorFlow Lite格式,如下所示:tensorflowjs_converter --input_format=tf_saved_model --output_format=tensorflow_lite --output_file=model.tflite saved_model_directory
或者,使用SavedModel_to_frozen_graph.py
脚本将模型转换为冻结图格式:
python SavedModel_to_frozen_graph.py --saved_model_dir saved_model_directory --output_file frozen_graph.pb
首先,确保在代码中包含必要的头文件:
#include <tensorflow/cc/saved_model/loader.h>
#include <tensorflow/cc/saved_model/tag_constants.h>
#include <tensorflow/core/framework/tensor.h>
#include <tensorflow/core/public/session.h>
然后,编写一个函数来加载模型:
tensorflow::Status LoadModel(const std::string& model_dir, std::unique_ptr<tensorflow::Session>& session) {
tensorflow::SessionOptions options;
tensorflow::RunOptions run_options;
tensorflow::Status load_status = tensorflow::LoadSavedModel(options, run_options, model_dir, {tensorflow::kSavedModelTagServe}, &session);
return load_status;
}
int main() {
std::unique_ptr<tensorflow::Session> session;
tensorflow::Status load_status = LoadModel("path/to/saved_model_directory", session);
if (!load_status.ok()) {
std::cerr << "Error loading model: " << load_status << std::endl;
return -1;
}
// Prepare input tensor
tensorflow::Tensor input_tensor(tensorflow::DT_FLOAT, tensorflow::TensorShape({1, input_size}));
// Fill input_tensor with your input data
// Run inference
std::vector<tensorflow::Tensor> output_tensors;
tensorflow::Status run_status = session->Run({{"input_tensor_name", input_tensor}}, {"output_tensor_name"}, {}, &output_tensors);
if (!run_status.ok()) {
std::cerr << "Error running inference: " << run_status << std::endl;
return -1;
}
// Process output_tensors
// ...
return 0;
}
请注意,您需要根据实际情况替换path/to/saved_model_directory
、input_tensor_name
、output_tensor_name
和input_size
。此外,您还需要根据模型需求预处理输入数据并将其填充到input_tensor
中。
领取专属 10元无门槛券
手把手带您无忧上云