学习
实践
活动
专区
工具
TVP
写文章

智能推荐:“相关性搜索”只给你最想要的

换言之,就是如何正确地理解用户意图,提高搜索的相关性,为用户提供满意的搜索结果。 什么是相关性 所谓相关性,就是根据内容对用户及业务需求的满足程度,对搜索内容进行排名的一门学问。 然而,技术只是实现相关性的工具,明白要做什么可能比知道怎么做更重要。“相关性”在某个具体应用里的含义大相径庭。 在不同的应用中其搜索相关性大不相同 我们很容易误以为搜索是一个单一问题。 电商网站为了达成交易,就要根据用户的搜索行为、历史数据等信息,为用户推荐合适的商品,促进销售。 医疗、法律和学术研究领域的专家搜索,通过更为深入地挖掘文本来定义相关性。 信息检索与相关性 那么,搜索的相关性有系统性的基础和通用的工程性原则吗?答案是有的。事实上,在相关性的背后藏着一门学问:学术领域里的信息检索(information retrieval)。 如何解决相关性 开源搜索引擎可以通过编程的方式将我们对相关性的理解植入搜索引擎,打造相关性解决方案,使之既满足用户需求,又符合业务目标。

1K40

操纵相关性

因为 nCount_RNA 和 nFeature_RNA是细胞的熟悉,所以没有0的干扰,这个相关性很好,而且是可靠的。 另外,因为 CD14 和 CD4 本来是髓系免疫细胞和cd4T细胞的标记基因,理论上就相关性应该是很差。 最后,CD79A 和 CD79B都是B细胞的标记基因,他们的相关性确实是应该是很好。 但是CD79A 和 CD79B在b细胞亚群里面是没有相关性的 看起来一切合情合理,但是如果我们具体到B细胞本身,就发现不对劲了。 这个时候有两个解释,首先是因为0值的存在,影响了相关性技术,其次是因为它们虽然都是B细胞的标记基因仅仅是说明它们都是应该在B细胞亚群里面高表达,并不能推理出来它们应该是正相关。 当然了,单细胞水平不同基因的表达量相关性本来就不应该是如此简单的计算,不过这个简单的探索,这两个简单的推理还是蛮有意思的的。 天色已晚,我不想写了,亲爱的读者们大家觉得应该是哪种可能性呢?

12320
  • 广告
    关闭

    2023新春采购节

    领8888元新春采购礼包,抢爆款2核2G云服务器95元/年起,个人开发者加享折上折

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    相关性分析方法怎么选择_多个因素相关性分析

    有时候我们根据需要要研究数据集中某些属性和指定属性的相关性,显然我们可以使用一般的统计学方法解决这个问题,下面简单介绍两种相关性分析方法,不细说具体的方法的过程和原理,只是简单的做个介绍,由于理解可能不是很深刻 1、Pearson相关系数   最常用的相关系数,又称积差相关系数,取值-1到1,绝对值越大,说明相关性越强。 该系数的计算和检验为参数方法,适用条件如下: (适合做连续变量的相关性分析) (1)两变量呈直线相关关系,如果是曲线相关可能不准确。 (适合含有等级 变量或者全部是等级变量的相关性分析) 3、无序分类变量相关性   最常用的为卡方检验,用于评价两个无序分类变量的相关性。 卡方检验用于检验两组数据是否具有统计学差异,从而分析因素之间的相关性

    34930

    相关性分析返回相关性系数的同时返回p值

    越来越多的人选择了它相关性分析。 如果是2万多个蛋白质编码基因和2万多个lncRNA基因的相关性,计算量就有点可怕,不过几十个m6a基因或者小班焦亡基因去跟其它基因进行相关性计算,基本上还是绝大部分小伙伴可以hold住的。 ,不过,这里没有给出p对应的p值,并不能说是统计学显著的相关性哦。 可能是对 R基础包stats里面的cor函数 不熟悉,以为它只能是对两个向量进行相关性计算,其实它可以直接对一个表达量矩阵进行相关性计算。 可以看到,同样的,因为是模拟数据,所以基本上相关性都很弱,而且p值不太可能是小于0.05的, 很难有统计学显著性。

    25710

    相关性分析的五种方法有哪些_数据相关性分析

    协方差只能对两组数据进行相关性分析,当有两组以上数据时就需要使用协方差矩阵。下面是三组数据x,y,z,的协方差矩阵计算公式。 协方差通过数字衡量变量间的相关性,正值表示正相关,负值表示负相关。 当我们面对多个变量时,无法通过协方差来说明那两组数据的相关性最高。要衡量和对比相关性的密切程度,就需要使用下一个方法:相关系数。, 3,相关系数 第三个相关分析方法是相关系数。 相关系数的优点是可以通过数字对变量的关系进行度量,并且带有方向性,1表示正相关,-1表示负相关,可以对变量关系的强弱进行度量,越靠近0相关性越弱。 经过计算城市与购买状态的相关性最高,所在城市为北京的用户购买率较高 到此为止5种相关分析方法都已介绍完,每种方法各有特点。 其中图表方法最为直观,相关系数方法可以看到变量间两两的相关性,回归方程可以对相关关系进行提炼,并生成模型用于预测,互信息可以对文本类特征间的相关关系进行度量 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人

    69520

    Python 数据相关性分析

    本文有视频教程,感兴趣的朋友可以前往观看 Python入坑实战系列 Part-2 – 简单数据相关性分析 概述 在我们的工作中,会有一个这样的场景,有若干数据罗列在我们的面前,这组数据相互之间可能会存在一些联系 ,可能是此增彼涨,或者是负相关,也可能是没有关联,那么我们就需要一种能把这种关联性定量的工具来对数据进行分析,从而给我们的决策提供支持,本文即介绍如何使用 Python 进行数据相关性分析。 关键词 python 方差 协方差 相关系数 离散度 pandas numpy 实验数据准备 接下来,我们将使用 Anaconda 的 ipython 来演示如何使用 Python 数据相关性分析,我所使用的 我们一般采用相关系数来描述两组数据的相关性,而相关系数则是由协方差除以两个变量的标准差而得,相关系数的取值会在 [-1, 1] 之间,-1 表示完全负相关,1 表示完全相关。 到这里我们应该已经了解了数据相关性分析的原理,以及简单的具体实践使用方法,日后在工作中遇到需要做数据相关性分析的时候,就可以派上用场了。

    16210

    强大的数据相关性分析

    在数据分析中,有一种分析就是相关性的分析,所谓的相关性的分析就是 “不同现象之间相互相影响的关系叫相关性分析”,比如商场折扣和销量的 的分析,我们可以通过相关性分析,来判断折扣和销量之间的相关性有多强 ,多少折扣是销量最大的折扣,再比如孩子的身高和体重是否有相关性,标准的孩子身高和提升多多少。 数据的相关性分为数据的正相关,数据的负相关,和数据的无关,通过数据相关系数的分析,我们可以判断两组数据之间相关强度。 ? 相关性分析中的 相关系数可以通过EXCEL中的函数来计算,然后我们来判断相关系数的平方数,来判断数据是正相关强烈还是负相关强烈,比如我们看到的下面这组数据,是营业额和加班小时的数据,我们通过相关性来判断公司的营业额和加班的关系是否强烈 ,我们要去判断,讲师的哪些授课技能是和最后的综合评分相关性最大,这些都是可以用相关性分析,和相关函数来进行计算。

    1.2K10

    ES6、ES7、ES8、ES9、ES10、ES11、ES12、ES13新特性大全

    本文是对 ES6 至 ES13 常用到的特性的总结,关于每个特性的详细内容,都有单独的文章进行详细讲述,可以跳转到具体文章进行学习查看。学习永无止境大家一起努力 。 文章为从新到旧的顺序。 ECMAScript 2018(ES9) 的新特性总结 ECMAScript 2017(ES8) async/await: 异步终极解决方案 Object.values() Object.entries ) 的新特性总结 ECMAScript 2016(ES7) Array.prototype.includes() 指数操作符 ** ECMAScript 2016(ES7) 的新特性总结 ECMAScript 2015(ES6) let和const 类(class) 模块化(ES Module) 箭头(Arrow)函数 函数参数默认值 模板字符串 解构赋值 延展操作符 ... 对象属性简写 Promise ES6 入门教程 阮一峰 ​ es6.ruanyifeng.com/

    81110

    关注

    腾讯云开发者公众号
    10元无门槛代金券
    洞察腾讯核心技术
    剖析业界实践案例
    腾讯云开发者公众号二维码

    相关产品

    • Elasticsearch Service

      Elasticsearch Service

      腾讯云 Elasticsearch Service(ES)是云端全托管的ELK服务,包含 Kibana ,集成X-Pack。帮助您快速部署、轻松管理、按需扩展集群,简化复杂运维操作,快速构建日志分析、全文搜索、BI 分析等业务。     

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券