首页
学习
活动
专区
圈层
工具
发布
50 篇文章
1
【原创佳作】介绍Pandas实战中一些高端玩法
2
pandas 如何实现 excel 中的汇总行?
3
pandas多级索引的骚操作!
4
40000字 Matplotlib 实操干货,真的全!
5
利用Python搞定女朋友的小情绪~
6
Python 绘制惊艳的瀑布图
7
6种方式创建多层索引
8
Python 进阶指南(编程轻松进阶):三、使用 Black 工具来格式化代码
9
数据科学 IPython 笔记本 9.6 聚合:最小、最大和之间的任何东西
10
精通 Pandas 探索性分析:1~4 全
11
高手系列!数据科学家私藏pandas高阶用法大全 ⛵
12
总结了67个pandas函数,完美解决数据处理,拿来即用!
13
PyAutoGUI,一个Python办公自动化利器!
14
解放双手|利用 PyAutoGUI 快速构建自动化操作脚本
15
Python中内置数据库!SQLite使用指南! ⛵
16
数据分析索引总结(中)Pandas多级索引
17
数据分析索引总结(下)Pandas索引技巧
18
数据分析索引总结(上)Pandas单级索引
19
网友需求系列01-Python-matplotlib定制化刻度(主副)绘制
20
用Python自动生成数据分析报告
21
手把手教你用Python操纵Word自动编写离职报告
22
pandas transform 数据转换的 4 个常用技巧!
23
30段极简Python代码:这些小技巧你都Get了么
24
数据处理遇到麻烦不要慌,5个优雅的Numpy函数助你走出困境
25
数据分析最有用的Top 50 Matplotlib图(带有完整的Python代码)(上)
26
数据分析最有用的Top 50 Matplotlib图(带有完整的Python代码)(下)
27
数据分析之Pandas变形操作总结
28
数据分析之Pandas缺失数据处理
29
数据分析之Pandas合并操作总结
30
数据分析之Pandas分组操作总结
31
学习用Pandas处理分类数据!
32
如何用Pandas处理文本数据?
33
Pandas处理时序数据(初学者必会)!
34
Python高阶函数使用总结!
35
机器学习在金融风控的经验总结!
36
你知道怎么用Pandas绘制带交互的可视化图表吗?
37
6个提升效率的pandas小技巧
38
Python数据分析库pandas高级接口dt和str的使用
39
pandas 拼接 concat 5 个常用技巧!
40
pandas分组8个常用技巧!
41
pandas 文本处理大全
42
pandas 筛选数据的 8 个骚操作
43
pandas 分类数据处理大全(附代码)
44
68 个Python内置函数,你用过几个?
45
太秀了!用 pandas 搞定 24 张 Excel 报表
46
用 Python 的 Template 类生成文件报告
47
码如其人,同学你能写一手漂亮的Python函数吗
48
Python处理图片九宫格,炫酷朋友圈
49
Python排序傻傻分不清?一文看透sorted与sort用法
50
python-docx操作word文件(
清单首页python文章详情

Python数据分析库pandas高级接口dt和str的使用

Series对象和DataFrame的列数据提供了cat、dt、str三种属性接口(accessors),分别对应分类数据、日期时间数据和字符串数据,通过这几个接口可以快速实现特定的功能,非常快捷。本文重点介绍和演示dt和str的用法。

DataFrame数据中的日期时间列支持dt接口,该接口提供了dayofweek、dayofyear、is_leap_year、quarter、weekday_name等属性和方法,例如quarter可以直接得到每个日期分别是第几个季度,weekday_name可以直接每个日期对应的周几的名字。DataFrame数据中的字符串列支持str接口,该接口提供了center、contains、count、endswith、find、extract、lower、split等大量属性和方法,大部分用法与字符串的同名方法相同,少部分与正则表达式的用法类似。

本文使用的数据文件为C:\Python36\超市营业额2.xlsx,部分数据与格式如下:

下面代码演示了dt和str接口的部分用法:

下一篇
举报
领券