首页
学习
活动
专区
圈层
工具
发布
50 篇文章
1
【原创佳作】介绍Pandas实战中一些高端玩法
2
pandas 如何实现 excel 中的汇总行?
3
pandas多级索引的骚操作!
4
40000字 Matplotlib 实操干货,真的全!
5
利用Python搞定女朋友的小情绪~
6
Python 绘制惊艳的瀑布图
7
6种方式创建多层索引
8
Python 进阶指南(编程轻松进阶):三、使用 Black 工具来格式化代码
9
数据科学 IPython 笔记本 9.6 聚合:最小、最大和之间的任何东西
10
精通 Pandas 探索性分析:1~4 全
11
高手系列!数据科学家私藏pandas高阶用法大全 ⛵
12
总结了67个pandas函数,完美解决数据处理,拿来即用!
13
PyAutoGUI,一个Python办公自动化利器!
14
解放双手|利用 PyAutoGUI 快速构建自动化操作脚本
15
Python中内置数据库!SQLite使用指南! ⛵
16
数据分析索引总结(中)Pandas多级索引
17
数据分析索引总结(下)Pandas索引技巧
18
数据分析索引总结(上)Pandas单级索引
19
网友需求系列01-Python-matplotlib定制化刻度(主副)绘制
20
用Python自动生成数据分析报告
21
手把手教你用Python操纵Word自动编写离职报告
22
pandas transform 数据转换的 4 个常用技巧!
23
30段极简Python代码:这些小技巧你都Get了么
24
数据处理遇到麻烦不要慌,5个优雅的Numpy函数助你走出困境
25
数据分析最有用的Top 50 Matplotlib图(带有完整的Python代码)(上)
26
数据分析最有用的Top 50 Matplotlib图(带有完整的Python代码)(下)
27
数据分析之Pandas变形操作总结
28
数据分析之Pandas缺失数据处理
29
数据分析之Pandas合并操作总结
30
数据分析之Pandas分组操作总结
31
学习用Pandas处理分类数据!
32
如何用Pandas处理文本数据?
33
Pandas处理时序数据(初学者必会)!
34
Python高阶函数使用总结!
35
机器学习在金融风控的经验总结!
36
你知道怎么用Pandas绘制带交互的可视化图表吗?
37
6个提升效率的pandas小技巧
38
Python数据分析库pandas高级接口dt和str的使用
39
pandas 拼接 concat 5 个常用技巧!
40
pandas分组8个常用技巧!
41
pandas 文本处理大全
42
pandas 筛选数据的 8 个骚操作
43
pandas 分类数据处理大全(附代码)
44
68 个Python内置函数,你用过几个?
45
太秀了!用 pandas 搞定 24 张 Excel 报表
46
用 Python 的 Template 类生成文件报告
47
码如其人,同学你能写一手漂亮的Python函数吗
48
Python处理图片九宫格,炫酷朋友圈
49
Python排序傻傻分不清?一文看透sorted与sort用法
50
python-docx操作word文件(
清单首页python文章详情

pandas 如何实现 excel 中的汇总行?

最近群里小伙伴提出了几个问题,如何用pandas实现execl中的汇总行。

关于这个问题,群里展开了激烈的讨论,最终经过梳理总结出了以下两个解决方法。一种是当做透视时直接使用参数margins,另一种是当无透视时手动造出汇总行。

pivot_table

问题(群成员"浮生如梦"): 我想统计一月到十二月的所有数据应该怎么写呢?

解决方法

  • 用法:sum()pivot_table

如果要对数据按行方向求和,直接使用sum()函数即可,设置参数axis=1(默认是axis=0列方向对列数据求和),然后将横向求和结果赋给一个新的字段。此例中为求和,其他统计方式如mean、max、min等均同理。

代码语言:javascript
复制
# 生成测试数据
df = pd.DataFrame(np.random.randint(10,100,(9,12)),
                  columns=['JAN','FEB','MAR','APR','MAY','JUN','JUL','AUG','SEP','OCT','NOV','DEC'])
# 横向求和
df['total'] = df.sum(axis=1)

此时已得到行方向的求和,如果我们想继续计算列方向求和并显示出来如何操作呢?可以借助pivot_table来实现,设置参数margins=True

代码语言:javascript
复制
pd.pivot_table(df, index=df.index, aggfunc='sum', margins=True)

groupby+concat

问题(群成员"张晶"): pandas里面如何实现类似excel中的汇总行?

代码语言:javascript
复制
kv = {'Name': {0: 'John', 1: 'Mack', 2: 'Lilei', 3: 'Kevin', 4: 'Alin', 5: 'Bob'},
 'Team': {0: 'A', 1: 'A', 2: 'B', 3: 'B', 4: 'C', 5: 'C'},
 'Jan': {0: 9, 1: 9, 2: 8, 3: 10, 4: 7, 5: 9},
 'Feb': {0: 10, 1: 7, 2: 8, 3: 7, 4: 6, 5: 8},
 'Mar': {0: 8, 1: 9, 2: 7, 3: 8, 4: 8, 5: 7},
 'Apri': {0: 8, 1: 7, 2: 6, 3: 7, 4: 6, 5: 8}}
df = pd.DataFrame(kv)

解决方法

用法:groupbyconcatsumtransform

该方法通过几种用法的组合间接实现了行和列数据汇总。

  • 对列数据的汇总求和比较取巧,使用groupby实现了对整列数据求和,求和sum函数中需设置numeric_only参数,只对数值求和。得到列汇总结果后将其与原数据进行concat纵向拼接。
  • 对行数据求和可以直接使用sum函数,通过axis=1指定横向求和。
代码语言:javascript
复制
# 增加列汇总数据
total = df.groupby(lambda _: '总计').sum(numeric_only=True)
# 与原数据纵向拼接
df_total = pd.concat([df,total]).fillna('/')
# 对原数据数值类型横向求和
df_total['total'] = df_total.sum(numeric_only=True,axis=1)
df_total

如果想要对Team进行分组求和,可以通过transform实现组合求和并添加为一个新的求和列。

代码语言:javascript
复制
# 分组内求和
df_total['team_total'] = df_total.groupby(['Team'])['total'].transform('sum')
df_total

以上是本次分享内容。

- end -

下一篇
举报
领券