数据处理|R-dplyr

dplyr包实现数据的清洗处理,包括数据整合、关联、排序、筛选、汇总、分组等。

1)安装、加载dplyr包、准备数据

install.packages("dplyr") #加载dplyr包

使用dplyr包处理数据前,建议先将数据集转换为tbl对象

data(iris)  #本文使用iris示例数据集。

2)数据记录筛选(行筛选)

filter函数:按指定条件筛选符合条件中逻辑判断要求的数据记录。

filter(iris, Sepal.Length == 7)

Q:筛选花萼长大于7,花萼宽带大于等于3的数据?

filter(iris, Sepal.Length > 7 & Sepal.Width>3.0)

Q:筛选出Species 为setosa或virginica的行

filter(iris,Species %in% c("setosa","virginica"))

3)变量筛选(列)

select函数:可以通过指定列名选择指定的变量进行分析,得到的为选择的列。

select(iris,Sepal.Width,Petal.Length,Species)

其他特殊选择,可匹配:

select(iris,contains("." )) #选取名称中含有字符的列

区别:Filter&Select

Filter:通过一些准则选择观测值(行)

Select:通过名字来选择变量(列)

更名变量名: Select & Rename

head(select(iris,Sepal.W=Sepal.Width)) #只会保留选择的变量

4)数据排序(重要,大小,去除异常值)

arrange函数按给定的列名进行排序,默认为升序排列,也可以对列名加desc()进行降序排序。

arrange(iris,Sepal.Length) # 将数据按照Sepal.Length升序排序

5)变量变换/重构

mulate()函数可以数据拓展,也可以在保留原变量的基础上增加变量,进行数据处理。

mutate(iris,sepal = Sepal.Length + Sepal.Width)

transmute()函数在扩展新变量的时候,会删除所有原始变量

transmute(iris,sepal = Sepal.Length + Sepal. Width) #计算一个或多个新列并删除原列

6)数据汇总

summarize()函数实现数据集聚合操作,将多个值汇总成一个值

summarise(iris,avg = mean(Sepal.Length))

利用概述函数概括数据,输入数值向量而返回单一数值:

first 向量的第一个值。

last 向量的最后一个值。

IQR 向量的IQR(四分位距) 。

Min ;Max Mean ;Median ;Var ;Sd等

summarise(iris, max(Petal.Width), first(Sepal.Width)) #返回数据框中变量的最大值及第一四分位值

7)数据分组

group_by函数对数据进行分组后,结合summarize函数,可以对分组数据进行汇总统计。

Q:按品种分组,分别计算花萼宽度的均方差

summarise(group_by(iris,Species),sd=sd(Petal.Width))

8)连接操作符

dplyr包里还新引进了一个操作符,%>%, 使用时把数据集名作为开头, 然后依次对此数据进行多步操作。

iris %>%group_by(Species) %>% summarise(sd=sd(Petal.Width)) #iris数据集,按Species分组,汇总Petal.Width的sd值,

9)抽样

sample_n()随机抽取指定数目的样本,sample_frac()随机抽取指定百分比的样本,默认都为不放回抽样,通过设置replacement =TRUE可改为放回抽样,可以用于实现Bootstrap抽样。

sample_n(mtcars, 50, replace = TRUE) #随机有重复的取50行数

10)数据联结

dplyr包也提供了数据集的连接操作,如左连接、右连接、内连接等:

inner_join(x,y,by = NULL)  #内连接,合并数据仅保留匹配的记录

by设置两个数据集用于匹配的字段名,默认使用全部同名字段进行匹配,如果两个数据集需要匹配的字段名不同,可以直接用等号指定匹配的字段名,如, by = c("a" = "b"),表示用x.a和y.b进行匹配。

11)数据合并

dplyr包中也添加了类似cbind()函数和rbind()函数功能的函数,它们是bind_cols()函数和bind_rows()函数。

注意:bind_rows()函数需要两个合并对象有相同的列数,而bind_cols()函数则需要两个合并对象有相同的行数。

查看自带的参考资料:vignette(package = "dplyr") vignette("introduction", package = "dplyr")

举报

扫码关注云+社区

领取腾讯云代金券