数据分析|R-描述性统计

前文介绍了脏数据中缺失值数据分析|R-缺失值处理和异常值数据分析|R-异常值处理的常规处理方法,之后就可以对数据进行简单的描述性统计,方便我们对数据有一个整体的认识。

常见描述性统计可以通过最小值、下四分位数、中位数、上四分位数和最大值,均值、众数、标准差、极差等查看数据的分布和离散程度;通过偏度(数据分布形态呈现左偏或右偏)和峰度(分布形态呈现尖瘦或矮胖)等查看数据的正态与否。

下面简单的介绍如何使用R实现数值型变量的上述统计量。

1 基础包中summary()函数

可得到数值型变量的最小值、下四分位数、中位数、上四分位数和最大值。

#使用自带的mtcars数据集,选择mpg,disp和hp三个数值型变量进行分析。
head(mtcars)
data <- mtcars[c("mpg","disp","hp")]
summary(data)
      mpg             disp             hp       
 Min.   :10.40   Min.   : 71.1   Min.   : 52.0  
 1st Qu.:15.43   1st Qu.:120.8   1st Qu.: 96.5  
 Median :19.20   Median :196.3   Median :123.0  
 Mean   :20.09   Mean   :230.7   Mean   :146.7  
 3rd Qu.:22.80   3rd Qu.:326.0   3rd Qu.:180.0  
 Max.   :33.90   Max.   :472.0   Max.   :335.0

2 psych包中describe()函数

可得到非缺失值的个数、均值、标准差、中位数、截尾平均数、绝对中位差、最小值、最大值、极差、偏度、丰度和平均值的标准误

#install.packages("psych")
library(psych)
describe(data)
 vars  n  mean     sd median trimmed    mad  min   max range skew kurtosis    se
mpg     1 32  20.1   6.03   19.2    19.7   5.41 10.4  33.9  23.5 0.61    -0.37  1.07
disp    2 32 230.7 123.94  196.3   222.5 140.48 71.1 472.0 400.9 0.38    -1.21 21.91
hp      3 32 146.7  68.56  123.0   141.2  77.10 52.0 335.0 283.0 0.73    -0.14 12.12

3 pastecs包中stat.desc()函数

当设置norm=TRUE(非默认)时,可以返回偏度和丰度(统计显著程度)和Shapiro-Wilk正态检验的结果。

其中p=0.05表示计算平均数的置信区间默认置信度为0.95.

#install.packages("pastecs")
library(pastecs)
options(digits=3) #设定三位小数
stat.desc(data,norm = TRUE)
                mpg      disp        hp
nbr.val       32.000  3.20e+01   32.0000
nbr.null       0.000  0.00e+00    0.0000
nbr.na         0.000  0.00e+00    0.0000
min           10.400  7.11e+01   52.0000
max           33.900  4.72e+02  335.0000
range         23.500  4.01e+02  283.0000
sum          642.900  7.38e+03 4694.0000
median        19.200  1.96e+02  123.0000
mean          20.091  2.31e+02  146.6875
SE.mean        1.065  2.19e+01   12.1203
CI.mean.0.95   2.173  4.47e+01   24.7196
var           36.324  1.54e+04 4700.8669
std.dev        6.027  1.24e+02   68.5629
coef.var       0.300  5.37e-01    0.4674
skewness       0.611  3.82e-01    0.7260
skew.2SE       0.737  4.60e-01    0.8759
kurtosis      -0.373 -1.21e+00   -0.1356
kurt.2SE      -0.230 -7.46e-01   -0.0837
normtest.W     0.948  9.20e-01    0.9334
normtest.p     0.123  2.08e-02    0.0488

4 自定义函数

除了上述函数包外,还可以自定义函数可以只返回需要的值。

my_describe <- function(x){
  options(digits = 3)
  N = length(x);
  Nmiss = sum(is.na(x));
  Min = min(x, na.rm = TRUE);
  Q1 = quantile(x, probs = 0.25, na.rm = TRUE);
  Median = median(x, na.rm = TRUE);
  Q3 = quantile(x, probs = 0.75, na.rm = TRUE);
  Max = max(x, na.rm = TRUE);
  Mean = mean(x, na.rm = TRUE);
  Sd = sd(x, na.rm = TRUE);
  Range = abs(diff(range(x)));
  skew <- sum((x-Mean)^3/Sd^3)/N
  kurt <- sum((x-Mean)^4/Sd^4)/N-3
  #返回结果
  return(data.frame(N = N, Nmiss = Nmiss, Min = Min, Q1 = Q1, Median = Median, Q3 = Q3, Max = Max, Mean = Mean, Sd = Sd, Range = Range, Skewness = skew, Kurtosis = kurt))
}
sapply(data, my_describe)
        mpg    disp  hp    
N        32     32    32    
Nmiss    0      0     0     
Min      10.4   71.1  52    
Q1       15.4   121   96.5  
Median   19.2   196   123   
Q3       22.8   326   180   
Max      33.9   472   335   
Mean     20.1   231   147     
Sd       6.03   124   68.6  
Range    23.5   401   283   
Skewness 0.611  0.382 0.726 
Kurtosis -0.373 -1.21 -0.136

可以看出自定义函数的结果与上述R包的结果一致,而且可以根据自己的需求选择返回值。

下一篇
举报

扫码关注云+社区

领取腾讯云代金券