人工智能:对其无知,才会恐惧(上)

随着Microsoft、Google等科技巨头纷纷举起人工智能大旗,全社会开始从不同角度和层面对人工智能进行解读,甚至误读。

那么,在专业学者眼中,人工智能技术究竟发展到了何种程度?我们对机器智能时代的到来到底应该欣喜还是恐惧?

专访嘉宾:秦曾昌

北京航空航天大学自动化学院副教授、北航科学技术传播研究中心秘书长。毕业于英国布里斯托(Bristol)大学获得硕士、博士学位。美国加州大学伯克利分校 (UC Berkeley) 博士后、牛津 (Oxford) 大学与卡内基梅隆大学 (CMU) 访问学者。目前主要研究方向为数据挖掘、跨媒体检索与自然语言理解。出版英文专著1本、编辑论文集1本和专业论文或章节80余篇。同时在IT工业界做机器学习、大数据、人工智能等专业技术咨询工作。作者欢迎对本文中的观点提出批评与讨论。

实验室网站:http://dsd.future-lab.cn/

日前,人工智能受到了舆论的空前关注。是否可以介绍一下,人工智能大致可分为哪些研究分支?各自的技术应用现状和商业前景如何?

人工智能话题在今天的流行,很大程度上也是因为商业公司的推动,包括微软、谷歌等等,它们在自己的产品和服务中大量使用人工智能技术,在人们生活的很多方面发挥了实际作用,可以说,人工智能技术其实很早就走出了学院和实验室,本身虽然属于非常前沿的领域,但与日常生活并没有想象那么遥远。

虽然媒体和公众对人工智能的讨论很多,看法有悲观也有乐观,产业投资也是时冷时热,但人工智能的学术研究其实一直在稳步推进。尤其在发达国家,产业与学界在这方面一直保持着密切的关联和互动。和其他技术相比,隶属于计算机科学的人工智能,从研究到商业化的速度更快,可能去年才发表的论文,今年就变成硅谷名校的学生作业,甚至很快变成了产品,这和行业属性有关,所有人反应都很快。

从大的研究潮流来看,“传统”人工智能研究,大部分由计算机科学家主导,但发展到今天,人工智能出现很多外延,引入了心理学、神经学等研究方法,但背后的终极目的,是理解人的智能或制造智能机器,或者兼而有之。

人类想要像鸟一样飞上蓝天,于是发明了飞机,飞机是运用鸟的飞行原理做出的能提供相同功能的机器,而不是一模一样的“鸟”。这也是计算机科学家的研究人工智能的方式。我们发明的计算机,绝大多数是为弥补人类脑力的不足,延伸人的计算能力和信息处理能力,并不要求机器工作方式与人类大脑工作机理完全一样。无论从工程角度还是数学角度,人工智能还是工具,是为了服务于人类。

当然,另外一些研究方式,主要是神经学,研究对象其实是人的意识和思维,是为了对其做出解释,这方面已有大量研究成果,最近我就看过一篇文章专门研究大脑如何定位,哪些细胞担负着类似GPS的地理定位功能,等等。这些成果逐渐和人工智能研究产生了交叉和对接。

具体到研究分支,最简单的办法是参考国际人工智能联合大会(International Joint Conference on Artificial Intelligence, 简称为IJCAI)的投稿内容,包括自然语言处理、图像识别、知识表示、多代理系统,甚至模糊逻辑、多值逻辑等,都算是人工智能的学术分支。

目前应用最为广泛的研究成果来自哪些分支?

这个很难界定,只能说被人们更频繁提及的日常应用当中,计算机视觉、语音识别和自然语言处理方面的技术稍微多些,主要用在人机交互和搜索上。搜索先是利用和处理大量文本,后来延伸到图像、视频搜索。还有一些与日常生活直接相关的应用如语音、指纹掌纹、生物识别等,也是成果比较多、进展比较迅速的。

这些分支和现在广受关注的“机器学习”是什么关系?

“机器学习”本身是人工智能的一个分支,它强调算法的有效性,就是用数据来训练算法,让机器自动具备学习和泛化能力,但是渐渐地,机器学习成了人工智能中最成功的分支之一,里面的思想渗透到各个领域。包括自然语言处理和图像识别,其背后的很多算法都是机器学习算法。机器学习分支本身既关心应用,更关心研究的扩展和深入。

机器学习是不是也有很多不同的方式?

是的,最常见的叫“有监督学习”(Supervised Learning)。举个例子,给机器一个数据库,数据有各种特征,如“身高”、“体重”、“头发颜色”等等,但每条数据有“男”和“女”标签,让机器去从这些数据特征和标签的关联中找到固定模式,形成算法模型,然后针对新输入的身高、体重等数据来判断性别,这就是“有监督学习”。

相反,“无监督学习”没有标签,让机器根据数据自己统计出特征,比如即使没有“男”、“女”标签,机器也能根据数据规律性,把具有相似特征的归为同一类。换一组数据作为度量尺度(measure),机器还可能最终将数据按照儿童、青年、老人分成三大类(当然,机器自己并不知道这种区分的具体现实意义,而只是依据某组数据特征做出的分类)。这种不需要人类事先分类标记的算法学习,叫“无监督学习”(Unsupervised Learning)。

我们从AlphaGo身上看到的,其实是另一种非常重要的机器学习方式,叫增强学习,但经过一系列动作,沿着一条路径完成一个过程,最终得到了或正或负的反馈,和相(Reinforcement Learning)。简单来说,机器在采取一个动作时,并不会得到反馈对应的奖励或惩罚值。这就好像要设计一个走出迷宫的路径,第一步往左还是往右是随机选择,一系列随机选择过后,可能进入死胡同,也可能走出了迷宫。机器根据结果回溯过程,选择(学会)成功的模式(算法),就是增强学习。

我们常常用“计算能力”、“存储能力”等来衡量计算机技术的进展。那么,是否存在某些具体指标,可以帮助人们衡量人工智能技术的成熟度?

不能说有非常确定的技术指标,不同领域会有不同突破。到了一定时点,人工智能在各种能力上都将超越人类。方便直观理解,你可以说某个算法成熟的标志是其在特定功能上超过人类。比如说人类在做大量检索方面,图书馆这种技术在很早之前就落伍了,一个简单的数据库就可以代替,互联网出现之后,数据库也不够用了,要设计新的算法来帮助进行搜索,但在这方面,人类能力早已没有任何招架之力。再比如,银行有大量数据,依靠人工监测和发现信用卡盗刷的情况简直太难了,只能设计一种算法来跟踪数据的变化,找出一些很弱的模式,发现数据反常的情况。在这样的领域,机器的能力早已经远远超过了人类。在另外一些领域,比如图片识别、自动驾驶,机器的能力虽然还没有达到人类的水准,但在稳步发展中,也许会在很多方面不断超越人类。

人工智能:对其无知,才会恐惧(下)预告:

我们真正应该担忧的是什么?

人们常常用 “弱人工智能”、“强人工智能”和“超人工智能”对人工智能的发展阶段进行区分,这样的处理有专业依据吗?

所以我们可能正处于人工智能历史上一波新热潮,在你看来,这种热度会一直持续么?还是很快又会迎来下一个低潮期?

对“奇点”理论——笼统来讲,即人工智能将在几十年内发生爆炸式发展,并最终越过技术临界点,全面超越人类智慧——你怎么看?

任何技术都有其两面性,人工智能技术真正需要担忧的地方是什么?

人工智能:实现能力与伪需求

在舆论和资本的推动下,出现了很多人工智能方面的创业公司,你觉得5-10年之内,这个市场对初创企业的机会大吗?还是主要会由谷歌、百度这样的大企业为主导?

短期来看,人工智能到底会给普通人的生活带来哪些深层次的改变?

文章转载自:创瞰巴黎

作者:秦曾昌

  • 发表于:
  • 原文链接http://kuaibao.qq.com/s/20180513A095JC00?refer=cp_1026
  • 腾讯「云+社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 yunjia_community@tencent.com 删除。

扫码关注云+社区

领取腾讯云代金券