阅读本文大概需要5分钟
说到堆这种数据结构,很多人的第一反应是感觉很复杂,其实不然,堆就是个优先级队列而已,或者,堆其实就是一种树。本文先讲原理,后面给出堆的实现代码。
优先级队列可以用有序数组来实现,这种做法的问题是,尽管删除最大数据项的时间复杂度为O(1),但是插入还是需要较长的O(N)时间,这是因为必须移动数组中平均一半的数据项以插入新数据项,并在完成插入后,数组依然有序。
本文主要介绍实现优先级队列的另一种结构:堆。堆是一种树,并非java和C++等编译语言里的“堆”。由它实现的优先级队列的插入和删除的时间复杂度都是O(logN)。尽管这样删除的时间变慢了一些,但是插入的时间快的多了。当速度非常重要,且有很多插入操作是,可以选择堆来实现优先级队列。堆有如下特点:
它是完全二叉树。即除了树的最后一层节点不需要是满的外,其他的每一层从左到右都完全是满的。
它常常用一个数组实现。用数组实现的完全二叉树中,节点的索引有如下特点(设该节点的索引为x):
它的父节点的索引为 (x-1) / 2; 它的左子节点索引为 2x + 1; 它的右子节点索引为 2x + 2。
堆中每个节点的关键字都大于(或等于)这个节点的子节点的关键字。这也是堆中每个节点必须满足的条件。所以堆和二叉搜索树相比,是弱序的。
向堆中插入数据,首先将数据项存放到叶节点中(即存到数组的最后一项),然后从该节点开始,逐级向上调整,直到满足堆中节点关键字的条件为止。
从堆中删除数据与插入不同,删除时永远删除根节点的数据,因为根节点的数据最大,删除完后,将最后一个叶节点移到根的位置,然后从根开始,逐级向下调整,直到满足堆中节点关键字的条件为止。
原理就这么多,堆真的很简单。
下面给出堆的实现代码:
这个实现的代码,可以在等公交的时候、吃饭排队的时候拿来看看,利用碎片化时间来学习。
END
●编号756,输入编号直达本文
●输入m获取文章目录
推荐↓↓↓
人工智能与大数据技术
更多推荐《18个技术类公众微信》
涵盖:程序人生、算法与数据结构、黑客技术与网络安全、大数据技术、前端开发、Java、Python、Web开发、安卓开发、iOS开发、C/C++、.NET、Linux、数据库、运维等。
领取专属 10元无门槛券
私享最新 技术干货