Python学习之高级特性

Linux编程

点击右侧关注,免费入门到精通!

作者丨stone_zhu

https://www.jianshu.com/p/37245bddde90

掌握了Python的数据类型、语句和函数,基本上就可以编写出很多有用的程序了。比如构造一个1, 3, 5, 7, ..., 99的列表,可以通过循环实现:

取list的前一半的元素,也可以通过循环实现。

但是在Python中,代码不是越多越好,而是越少越好。代码不是越复杂越好,而是越简单越好。基于这一思想,我们来介绍Python中非常有用的高级特性,1行代码能实现的功能,决不写5行代码。请始终牢记,代码越少,开发效率越高。

切片(Slice)

在很多编程语言中,针对字符串提供了很多各种截取函数(例如,substring),其实目的就是对字符串切片。Python没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。

迭代

1.通过collections模块的Iterable类型判断对象是否为可迭代对象

2.Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身

列表生成

1.list(range(1, 11))

2.生成[1x1, 2x2, 3x3, ..., 10x10]

3.列表生成式(list comprehensions)可以用一行语句代替循环生成上面的list

生成器(generator)

generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误;

同样也可以使用for循环遍历

1.把一个列表生成式的[]改成()

2.函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator

generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代

迭代器

可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如list、tuple、dict、set、str等;

一类是generator,包括生成器和带yield的generator function

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable。可以使用isinstance()判断一个对象是否是Iterable对象。

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。可以使用isinstance()判断一个对象是否是Iterator对象。

集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

python的for循环本质上就是通过不断调用next()函数实现的。

完全等同于:

小结:Python的Iterator对象表示的是一个数据流,这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

【点击成为编程大牛】

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20181016B1UZLP00?refer=cp_1026
  • 腾讯「云+社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 yunjia_community@tencent.com 删除。

扫码关注云+社区

领取腾讯云代金券