忘关烤箱了?我用 Python和OpenCV 来帮忙!

关键时刻,第一时间送达!

这篇文章应用计算机视觉和图像处理技术,展示了检测烤箱开关状态的过程。在生活中,有时你会粗心大意忘关烤箱之类的厨房电器,这潜在很大的危险。因此作者采用 Python 和 OpenCV,通过家庭摄像头获取的图像来自动识别烤箱是否开着,进而可以触发警报。

“我忘关烤箱了吗?”

这个问题常常会在最不方便的时候出现在你的脑子里。

有时是当你刚刚走出家门的时候。 有时是当你在上班路上的时候。 有时是当你坐在飞机上准备度个长假的时候……

解决这个问题的方法是多种多样的:

橡皮筋的方法

大声说或唱出来(就像 Samuel L. Jackson 一样)

当你离开家去度假的时候,给烤箱在内的电器列个清单或做个标记。 或者,我们也许有更好的做法……

在本教程中,我们会尝试利用技术手段解决这个问题。

Github 里有完整代码。

问题定义

对我们而言,我们需要确定一个信号,用于判断烤箱的开关状态。在我的厨房里,这个信号就是顶部标记着“烤箱开”字样的红色灯。

当红色灯亮的时候,烤箱是开着的:

当红色灯灭的时候,烤箱是关着的:

预备条件

确保你的电脑上安装了以下应用:

OpenCV 3.0

Python 2.7

Numpy 1.9

安装 OpenCV3.0 和 Python 2.7

如果你尚未安装 OpenCV,请按照 Adrian Rosebrock 的完美教程,在 OSX 系统上安装 OpenCV 3.0 和 Python 2.7+。我在安装步骤里增加了一些自己的注释,以防你在 OSX 上编译 OpenCV 3.0时遇到问题。

步骤

如果你已经成功在你的环境中安装了 OpenCV,我们就可以开始判断烤箱开关的数据分析了。

加载需要的包

argparse —— 参数处理库。

numpy —— 高度优化的数值运算库。OpenCV 在数组结构中使用 numpy。

cv2 —— OpenCV 中图像处理库。

importargparse

importnumpyasnp

importcv2

载入图片

image = cv2.imread(image_path)

图片降噪

我们为了给图片降噪,需要对输入图片进行平滑处理。这样会更容易在图片中定位目标。使用 medianBlur 函数,把光圈大小定为 3 。数字越大意味着图像会越模糊。

blur_image = cv2.medianBlur(image, 3)

把图片颜色转为 HSV 格式

HSV —— 色度、饱和度和纯度(亮度)。HSV 可以让我们提取出一个彩色对象,因为它比 BGR 格式(译者注:与我们常说的RBG色彩模型类似,三个字母分别代表红蓝绿三色)更容易表征颜色。

把图片转为 HSV 格式可以让我们通过色度(一个值而不是三个值),来确定图片中的一个颜色。

以下是实现方式:

hsv_image = cv2.cvtColor(blur_image, cv2.COLOR_BGR2HSV)

执行结果如下图:

检测图片中的颜色

为了检测我们想要的颜色,我们可以查看烤箱灯图片中颜色的直方图。

我们可以看出,红色在图片中占统治地位。红色有两个高峰 —— 一个幅度高,一个幅度低。这些颜色值转变为色度范围从 0 到10,以及从 160 到 180 (针对红色)。

在 HSV 图片中针对每一个色度范围,我们可以创建一个遮罩,来去掉所有不在选定范围的无关颜色。

defcreate_hue_mask(image,lower_color,upper_color):

lower=np.array(lower_color,np.uint8)

upper=np.array(upper_color,np.uint8)

# Create a mask from the colors

mask=cv2.inRange(image,lower,upper)

output_image=cv2.bitwise_and(image,image,mask=mask)

returnoutput_image

# Get lower red hue

lower_red_hue=create_hue_mask(hsv_image,[,100,100],[10,255,255])

# Get higher red hue

higher_red_hue=create_hue_mask(hsv_image,[160,100,100],[179,255,255])

结果如下:

接下来把这些图片合并在一起,以抓取所有红色色度。

full_image=cv2.addWeighted(lower_red_hue,1.0,higher_red_hue,1.0,0.0)

结果如下:

发现图片中的圆圈

现在我们的图片上仅有红色色度,接着我们需要判定红灯是否开启(即是否存在红色色度的那个圆圈)。我们需要在新图中发现圆圈,不过首先需要把图片转换成灰度图(因为 HoughCircles 函数的输入要求是灰度图)。

检测图片中的圆圈需要以下参数(使用 OpenCV中 的 HoughCircles 函数):

灰度图输入。

HOUGH_GRADIENT 是用来检测圆圈的方法(目前仅有的一个方法)。

累加器和图片分辨率的反比。在本例中,为1.2。

待检测圆圈圆心的最小距离,本例中为100。

#Convert image to grayscale

image_gray=cv2.cvtColor(full_image,cv2.COLOR_BGR2GRAY)

#Find circles in the image

circles=cv2.HoughCircles(image_gray,cv2.HOUGH_GRADIENT,1.2,100)

结果

此时就可以检查是否有圆圈了。如果有就意味着至少有一个烤箱灯亮着。如果找不到圆圈就意味着没有灯亮,烤箱关着。

为了证明此结论,我们可以用下述代码在原图中画圆圈:

# Draw the circles on the original image

circles=np.round(circles[,:]).astype("int")

for(center_x,center_y,radius)incircles:

cv2.circle(image,(center_x,center_y),radius,(,255,),4)

结果如下:

下一步

接下来还有很多可以做的,比如:

检测特定灯的开启,用以了解烤箱的真实状态。

建立一个服务以便远程检查烤箱状态。

把该功能加入树莓派(译者注:基于Linux的迷你开发板),我们就拥有可以警告烤箱关闭与否的小型设备。

全部样例代码可以在 Github 中找到。写于2015年,8月2日

Github链接:https://github.com/kazuar/opencv_light_detection

英文:Tzahi Vidas

编译:伯乐在线 - 顾星竹

http://python.jobbole.com/84127/

程序员共读整理发布,转载请联系作者获得授权

  • 发表于:
  • 原文链接http://kuaibao.qq.com/s/20180127B0KLF800?refer=cp_1026
  • 腾讯「云+社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 yunjia_community@tencent.com 删除。

扫码关注云+社区

领取腾讯云代金券