恺明大神又发新作 Rethinking ImageNet Pre-training,读过论文的你怎么看?

这里是 AI 研习社,我们的问答版块已经正式推出了!欢迎大家来多多交流~

http://ai.yanxishe.com/page/questionDetail/9461

社长为你推荐来自 AI 研习社问答社区的精华问答。如有你也有问题,欢迎进社区提问。

话不多说,直接上题

@Mikasa说:

如题,恺明大神又发新作 Rethinking ImageNet Pre-training

地址:https://arxiv.org/abs/1811.08883

在论文中,他们表示,如果你的数据量足够多,那么使用 ImageNet 预训练模型并不能提升准确度。

有读过论文的小伙伴吗?

来自社友的回答

@从末

扔掉 ImageNet 预训练需要两个前提条件:一是有足够多的数据集;二是有足够强大的计算力。

然而目前很多领域恰恰存在数据量不足的问题,计算力也要视情况而定,恺明大神在论文中的观点在目前看来可能不具有太大的普遍性,但是可以是今后努力的方向啦~

@杨晓凡

恺明论文提出的这个问题也不是大家第一次意识到了。去年 CVPR 2017 有篇论文就隐含了类似的思路。我对照介绍一下,大家马上就明白了。

去年这篇 CVPR 论文名叫《Fine-tuning Convolutional Neural Networks forBiomedical Image Analysis: Actively and Incrementally》,来自做深度学习医学影像分析的人。这篇论文的方法是在 ImageNet 预训练模型上的精细调节模型+主动学习。为什么要这样做?用原作者的话说:“遇到两种情况的时候,这篇论文的可以非常强大的指导意义:一,一共手头有 100 个未标记样本,和仅仅够标记 10 个样本的钱,老板说,通过训练这十个标记的样本,能接近甚至达到训练 100 个样本的 performance;二,手头有了一个已经在 100 个样本中训练完的分类器,现在又来了100 个新标记的样本,老板说,只给提供够训练 10 个样本的计算机;或者只给你提供够训练 10 个样本的时间,让分类器尽快学习到新来样本的特征”

要么样本不足,要么计算资源不足,两种情况都是实际应用中常出现的状况,也是好的工程方法会极具价值的状况。所以为什么 ImageNet 预训练的做法会这么流行,就是因为在实践中遇到这样的限制时有事半功倍的效果。以至于

NLP 任务上也开始流行这种做法

流行以后我们就要回过头来看了,要对这种做法做理论性的、全面的辨析。毋庸置疑的是样本不足、资源不足的时候这种方法效果很好,那么样本和资源都很多的时候,我们还需要这样做吗?何恺明就在这篇论文中给出了答案。具体如何大家也都心里有数。

前面提到的那篇 CVPR 2017 论文,作者自己写的介绍博客可见:https://www.leiphone.com/news/201707/mTyG0mVjpVag5mmn.html

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20181126A1TGYF00?refer=cp_1026
  • 腾讯「云+社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 yunjia_community@tencent.com 删除。

扫码关注云+社区

领取腾讯云代金券