全球机器学习教父Tom Mitchell宣布加入松鼠AI

又是一个阳光明媚的天气,新的一天又是这么可爱,大家好,我是“小梦”小编,今天为大家带来不一样的精彩内容,希望各位看官给小编动手评论点赞喔!您的每一次评论点赞都会带来好运气喔!

北京,在全球AI+智适应教育峰会AIAED上,著名学府美国卡内基梅隆大学CMU计算机学院院长、美国工程院、艺术与科学院院士,美国科学促进会(AAAS)、国际人工智能协会(AAAI)Fellow,Tom Mitchell教授,正式宣布接受松鼠AI的邀约,出任Chief AI officer一职。

包括BAT和微软亚洲研究院在内,第一次聘请到如此级别的人工智能行业泰斗加入。

代替了李飞飞的职位。CMU的教授Manuela Veloso 刚刚被JP Morgan 请去成为首席科学家。而在CMU,"Tom Mitchell教授是当今世界上最顶尖的三大机器学习专家之一,这是全球公认的" 国际顶尖学术会议IEEE ICDM的创立人和主席吴教授如此评价Tom教授,130篇论文在国际顶级杂志发布,他更是千亿美金市值企业必争之顶尖人才清单中的Top 1。

Tom Mitchell屡屡拒绝硅谷顶尖企业抛出的高薪橄榄枝,继续潜心在大学从事科研教育工作。此次宣布加入中国本土独角兽企业松鼠AI智适应,在业界也是引起一阵骚动。

松鼠AI教育创始人栗浩洋表示,教育终有一天会被AI彻底颠覆改变,对此我和Tom Mitchell教授坚定无比,这也是促使教授选择与松鼠AI携手一起改变世界的最大原因。

教育行业的核心痛点只有一个:缺乏优质的教师资源。

几百万人口中,初中英语学科只有一位特级教师。“因为他需要20、30年的经验,去不断的累积,这样的教师资源是我们可遇而不可求的。”

稀缺的不仅是优质教师资源。据今年8月教育部发布《2017年全国教育事业发展统计公报》显示,全国共有义务教育阶段学校21.89万所,招生3313.78万人,在校生1.45亿人,专任教师949.36万人。而特级教师不到千分之一,这个巨大的差距,使得保证基本教学质量就已经成为一个艰巨的任务,更遑论能够让孩子学习效率得到最大提升的个性化问题了。

使得虽然互联网和移动互联网技术给教育带来了一些变化,但并没有取得其他领域那样巨大的变化和影响,只是提高了获取教育资源的便利性,却并没有对教育学习的效率带来很大提升,更没有解决到到教育的深层次问题。

而AI对社会劳动力结构的颠覆将更胜当年。教育几百年来都没有被科技改变过,而AI已经在美国被广泛认知会解决教育长久以来的优质资源稀缺和不够个性化的问题。

栗浩洋和Tom Mitchell 教授的忘年之交,始于2018年伦敦的AIED(人工智能教育大会)。 教授作为主题演讲嘉宾,松鼠AI作为该次会议唯一一家来自中国的公司有论文被会议接收并且有演讲分享,在大会主席的邀请下创始人栗浩洋做了晚宴致辞,公司首席科学家崔炜与教授见面聊了两个多小时,从松鼠AI人机大战教学效果超过高级教师的技术核心、AI引擎+内容+服务一体化研发和产品战略、到已经取得上百万学生的认可以及超过80%的复购率,淋漓酣畅,之后的每次见面Tom都会提起那次难忘的伦敦见面。教授还发现,松鼠AI的首席架构师Richard已经和他熟识的CMU的几位教授展开了技术合作。

创始人栗浩洋专程赶到CMU,和教授再次见面,原定两个小时的交流,后来一直谈了九个小时,教授深深地被栗浩洋独创的“用错因重构知识空间理论”、“非关联性知识点的关键概率算法”等等对教育技术和人工智能算法的理解深度和创新所吸引,并且被他投身AI教育致力于给所有人带来教育公平的愿景所深深打动,当场决定加入松鼠AI,担任Chief AI Officer 。

栗浩洋如何向教授解释松鼠AI产品?“我们对知识点拆分的颗粒度其实比Knewton、ALEKS等美国的竞争对手产品多了十倍。”

觉得十分惊讶,询问如何做到这么精细的拆分?拆分后对比实验的效果如何?

如上文所谈到的那样,智适应学习在美国起步更早,而在中国真正为大众所知也不过短短几年时间。但显然,在实际落地的场景中,中国的创业公司已经先人一步。

与国外领先的自适应公司相比,虽然它们已经做了很久,有了大量的数据积累,现有的产品模式也比较完善,但是,对于中国而言,智适应研究本地化的优势更明显。因为中国的学习强度和考试内容难度高于国外,测试的题目也是,加之中国地大物博,教材的穿越性也非常大。

关于一元二次方程,ALEKS拆解为了13个知识点,而松鼠AI团队拆解为了107个;初中英语听力知识点拆分为了8000多个。 “中国可能更需要纳米级和超纳米级拆分。”栗浩洋表示,在英语学习方面,中美两国学生面对的是不同的问题,类似连读、爆破音和固定搭配等用法并不了解,口语和书面语也难以区分的中国学生需要比欧美颗粒度更加精细的知识点拆分。

如果我们思考教育的终极目的,不是最大范围内获取书本知识和在考试中取得高分,更应该是关注一个学生的能力,这包括他的思想和方法,也关乎创造力和想象力。松鼠AI目前已经突破了欧美同行知识点学习的局限,开始培养孩子的举一反三的能力、思想和方法的学习。

松鼠AI团队的原则是“三课原理”:第一节可定义,第二可测量,第三可传授。只有把一项学习能力清晰定义之后,然后再对每个学生在该能力的水平进行测量,才可能进行传授和确保学生掌握,对于人的综合能力和情商能力亦是如此。

不太会跟人交往。打招呼都会觉得脸红,也不知道怎么样开始。”栗浩洋表示,他后来反复思考,尝试把“情商”拆解为30多种能力,诸如观察能力、语言表达能力、寻找对方感兴趣的话题的能力、对别人的心态判断的能力,甚至是遭受不公平对待之后的自我化解能力等等。

在与他人聊天时,如何判断对方是真心对你的内容感到兴趣,还是出于礼貌不便打断?如果是前者,就证明你的表达是有效的,反之,这不仅是一次失败的表达,还容易造成对方的反感。

如果对方根本不想听,而你还喋喋不休,则证明情商是堪忧的。所以,在一开始就要学会观察,发现他人微表情的区别,然后尽量找到别人感兴趣的话题。

再难以测量的情商能力,也可以细化到“你每分钟是不是看了别人两三眼”这样细微的颗粒,去观察接受者的情绪变化。

移动射击能力、俯卧撑、背负重物跑与爬等等这些不同能力之后,然后再去进行综合训练,完成任务的目标性训练,从笼统到细分,从细分最后再到综合的训练。”栗浩洋说。

“我那时候也想过情商的问题,我们的很多学生因为是学计算机的,我担心他们情商有问题,所以我也研究过这个事情。而栗的方法无意更加可操作并且可以明显取得效果。”

教授还和栗浩洋分享了他的一项研究,他展示了通过扫描大脑的热点,发现大脑看到不同的词汇和想到不同内容的时候,热点范围是不一样的。栗浩洋也谈到,松鼠AI也在通过脑电波对学生进行测量,来观察学生在学习过程中的专注力是集中还是分散。

从来没有人将人类的行为和思想解构得如此细致且大胆,未来的学习和教育,将会以一种全新的形象,出现在我们的面前。

到2030年,AI的应用部署将为全球GDP增加15.7万亿美元。这其中,至少有AI教育的半壁江山。

Mitchell 将带领团队十多位AI科学家和几百位AI应用工程师以及技术团队,进行人工智能在智适应教育领域的基础研究和相关产品的研发应用等。

将成为智适应学习的驱动式技术,发力点主要包括学习目的、学习数据类型、多任务处理学习理论、非监督式学习和增强学习等方面。”Mitchell说。

Tom Mitchell教授已经为松鼠AI制定了加入后的详细工作计划:

制定人工智能教育的白皮书,就像教授多年前指定的机器学习的白皮书称为全球技术的指导规范那样,成为全球AI教育的工作标准。

优化现有的AI算法模型,在利用实时动态数据(学生学习时候的正答率、时间、表情、脑电波等等)不断调整学生的动态学习目标和推荐给学生的学习内容(视频、动画、讲义、题目、解析等)时,可以更加精准,让效果更加突出。

尝试教授近几年研究的重点课题,用人机对话来使用户可以教授机器,从而颠覆过去机器学习只能够依靠算法自我进化的现状。采用类似人类大脑的学习方式,让机器从每一次被指导中直接学习,就像一个人对GPS导航的一次错误的直接矫正可以省去百万数据量下机器学习的优化一样,每个学生、老师都可以通过和机器做简单的结构化的对话来高效完善机器学习本身!这一个战略将是AI领域颠覆性的突破。

教授的想法都与松鼠AI不谋而合。在中国这样的高速发展国家,名校、高级教师都是稀缺资源,根本不能满足人们的需求,政府也是束手无策,AI教育工具能帮助人们适应科技变革引发的剧烈变化,也有助于解决财富增长后对优质教育的迫切需求。“老师无法应对每一个孩子的不同的学习状态和能力带来的千人千面的需求。”因此,在教授的帮助下,松鼠AI的“AI特级教师”可以更加精准地扫描确定学生的知识点漏洞实现“哪里不会学哪里”,更加有效地推送知识讲解视频等帮助学生“学习更透明,能力上升看得见”。相比传统线上教育的毫无互动的录播课以及传统线下教育的低效高价,松鼠AI的终极梦想是让每一个孩子身边都有一个像拉斐尔《雅典学院》中57位智者合体的AI老师,实现真正的教育公平。

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20181126A1UF7800?refer=cp_1026
  • 腾讯「云+社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 yunjia_community@tencent.com 删除。

扫码关注云+社区

领取腾讯云代金券