数据可视化的7大实用技巧

大数据观察

了解大数据,关注大数据观察吧!

每个想了解最新大数据资讯的人,都关注了我

文 / 人民日报

大数据时代,数据驱动决策。处理不好庞大、复杂的数据,其价值将大打折扣。

那如何缩短数据与用户的距离?让用户一眼抓到重点?让老板为你的汇报方案鼓掌?下文将为你说明。

比较

基于分类/时间的数据对比,通常需用到比较型图表。用户通过图表轻松识别最大/最小值,查看当前和过去的数据变动情况。

常见场景:哪个地区的收件量最多?今年的收入和去年相比如何……

1. 条目少 – 柱状图

比较条目较少时,如5个地区收件量的对比,可选用柱状图表示。

2. 条目多 – 条形图

当条目较多,如大于12条,移动端上的柱状图会显得拥挤不堪,更适合用条形图。一般数据条目不超过30条,否则易带来视觉和记忆负担。

3. 看趋势 – 折线图

当X轴为连续数值(如时间)且注重变化趋势时,则适用折线图。

4. 扩大差异 – 南丁格尔玫瑰图

除柱状图外,有无更新颖的表现方式呢?那就属南丁格尔玫瑰图了。

由于扇形的半径和面积是平方的关系,南丁格尔玫瑰图会将数值之间的差异放大,适合对比大小相近的数值。它不适合对比差异较大的数值,因为数值过小的类目会难以观察。

此外,因为圆有周期性,玫瑰图也适于表示周期/时间概念,比如星期、月份。依然建议数据量不超过30条,超出可考虑条形图。

5. 双向 – 双向条形图

前面的例子都是单维度比较,当比较正反两类甚至更多维度的数据时,可尝试双向条形图,下图为各大区的重点地区的收派件量的对比。

用颜色区分大区,空心/实心区分收件量和派件量,既能整体比较大区,又能详细对比地区的情况。

打怪升级,再加点难度。在双向图上再增加一个维度,如下表,比较5个地区的利润及相应的收入和成本。请先思考一下,再下滑看推荐图表。

通过图形一眼就能看出深圳区的利润低于广州区,即使它的收入高于广州区,但成本相对来说高于广州区。

6. 目标达成 – 子弹图

实际业务中,常要考察指标的达成情况,如收入达标情况及所处区间(优、良、差),如下表,你会怎么可视化呢?动手画一画吧!

△ 业务数据

子弹图,因为像子弹射后带出的轨道。相较于仪表盘,它能够在狭小的空间中表达丰富的数据信息,在信息传递上有更大的效能优势。

若还要比较4个季度的收入情况,只需用不同颜色区分。如下图,一眼便知第二季度表现较好,而第一季度则不佳。

7. 性能 – 雷达图

对于一些多维的性能数据,如综合评价,常用雷达图表示。指标得分接近圆心,说明处于较差状态,应分析改进;指标得分接近外边线,说明处于理想状态。

以上就是「比较」类的常用图表,可归纳如下。

此表并非一成不变的「铁表」,相互之间还会串联交叉,大家还需灵活应用。

主题 |大数据可视化

插图 | 网络来源

作 者 介 绍

数据君:)

了解大数据,关注大数据观察

部分图文来自网络,侵权则删

我想给你一个理由 继续面对这操蛋的生活

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20181203B119TR00?refer=cp_1026
  • 腾讯「云+社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 yunjia_community@tencent.com 删除。

扫码关注云+社区

领取腾讯云代金券