人工智能最早的探索也许可以追溯到莱布尼茨,他试图制造能够进行自动符号计算的机器,但现代意义上人工智能这个术语诞生于1956年的达特茅斯会议。
关于人工智能有很多的定义,它本身就是很多学科的交叉融合,不同的人关注它的不同方面,因此很难给出一个大家都认可的一个定义。我们下面通过时间的脉络来了解AI的反正过程。
黄金时期(1956-1974)
这是人工智能的一个黄金时期,大量的资金用于支持这个学科的研究和发展。这一时期有影响力的研究包括通用问题求解器(General Problem Solver),以及最早的聊天机器人ELIZA。很多人都以为与其聊天的ELIZA是一个真人,但它只是简单的基于匹配模板的方式来生成回复(我们现在很多市面上的聊天机器人其实也使用了类似的技术)。当时人们非常乐观,比如H. A. Simon在1958年断言不出10年计算机将在下(国际)象棋上击败人类。他在1965年甚至说“二十年后计算机将可以做所有人类能做的事情”。
第一次寒冬(1974-1980)
到了这一时期,之前的断言并没有兑现,因此各种批评之声涌现出来,国家(美国)也不再投入更多经费,人工智能进入第一次寒冬。这个时期也是联结主义(connectionism)的黑暗时期。1958年Frank Rosenblatt提出了感知机(Perception),这可以认为是最早的神经网络的研究。但是在之后的10年联结主义没有太多的研究和进展。
兴盛期(1980-1989)
这一时期的兴盛得益于专家系统的流行。联结主义的神经网络也有所发展,包括1982年John Hopfield提出了Hopfield网络,以及同时期发现的反向传播算法,但主流的方法还是基于符号主义的专家系统。
第二次寒冬(1989-1993)
之前成功的专家系统由于成本太高以及其它的原因,商业上很难获得成功,人工智能再次进入寒冬期。
发展期(1993-2006)
这一期间人工智能的主流是机器学习。统计学习理论的发展和SVM这些工具的流行,使得机器学习进入稳步发展的时期。
爆发期(2006-现在)
这一次人工智能的发展主要是由深度学习,也就是深度神经网络带动的。上世纪八九十年度神经网络虽然通过非线性激活函数解决了理论上的异或问题,而反向传播算法也使得训练浅层的神经网络变得可能。不过,由于计算资源和技巧的限制,当时无法训练更深层的网络,实际的效果并不比传统的“浅度”的机器学习方法好,因此并没有太多人关注这个方向。
未来展望
最近一个比较明显的趋势就是非监督(半监督)学习的进展,首先是在自然语言处理领域,根据前面的分析,这个领域的任务多、监督数据少的特点一直期望能在这个方向有所突破。在计算机视觉我们也看到了Google DeepMind的最新进展还会有更多的突破。相对而言,在语音识别领域这方面的进展就慢了一些,先不说无监督,就连从一个数据集(应用场景)Transfer到另一个数据集(场景)都很难。比如我们有大量普通话的数据,怎么能够使用少量的数据就能在其它带方言的普通话上进行很好的识别。虽然有很多Adaptation的技术,但是总体看起来还是很难达到预期。
从长远来讲,要“真正”实现人工智能,还得结合视觉、听觉(甚至味觉和触觉等)和语言,使用无监督、监督和强化学习的方法,让”机器”有一个可以自己控制的身体,像三岁小孩一样融入”真正”的物理世界和人类社会,才有可能实现。这除了需要科技上的进步,还需要我们人类在思想上的巨大突破才有可能实现。
领取专属 10元无门槛券
私享最新 技术干货