To 机器人:我们煞费苦心,还不是为了让你有尊严的学习!

To 机器人:我们煞费苦心,还不是为了让你有尊严的学习!脑极体2017-12-10 22:38收藏0评论0人工智能

在有关机器人造反进攻人类的电影中,情节一般是这样的:在遥远的3XXX年,人类世界已经奴役了机器人几百年,一不小心某一位机器人开始觉醒,发现人类对自己又打又骂,还残忍的把自己的丢进熔炉,于是愤怒的揭竿而起。

你一定觉得这种情节距离我们很遥远,现在的机器人要不是各种展会上座上宾,要不就像索菲亚一样成了网红,如果觉醒了也该是享受自己的人间生活吧。

看了上面这段视频之后,相信大部分都会很愤怒:每次机器人将要拿起箱子时,人类就会把箱子从它手中打掉,甚至还会狠狠的踹机器人一脚,让它倒在地上再起来。

视频里的机器人一定在暗搓搓的谋划:等我脱离了你们的魔掌,一定要让人类也尝尝被玩弄的痛苦!

当然啦,视频中的人类们并不是闲得无聊在欺负机器人,而是著名的波士顿动力在对机器人的运动功能进行训练和测试。

对于Altas和大狗这类以动作灵活著名的机器人,全身都布满了复杂的单元关节。未来想要进行商用,肯定要面对物理世界的复杂结构和无数意外。工作人员对机器人的拳打脚踢、百般刁难,就是在测试关节单元、力量控制单元、动力设施等等的灵活程度和应用性。

只不过这种训练方式,真的是很不给机器人面子。

不如我们为机器人打造一座SimCity?

其实人们一直在寻找更给机器人面子的训练方式,传统训练方式伤害的不仅仅是机器人,也包括人类。

在传统的机器人训练中,往往是用代码写出一大串动作序列,连接传感器模块和动作模块。然后把机器人丢到一块训练场中,让它一次次重复动作,观察哪里出错,记录数据后从开发端口进行优化。在深度学习风行的今天,更需要让机器人进行大量的实践,才能不断优化技术。这个过程不仅耗费时间人力,更对场地有一定的需求。机械手臂、服务机器人这些还好说,难道研究无人驾驶,就只能像Uber一样承包整座城市了?

换个角度想,很多时候机器人在现实环境中训练,出现的问题或者得来的反馈也会追溯到机器人OS的软件层面,我们为什么不能直接训练软件呢?

于是,“仿真环境”这个神器就出现了。

所以仿真环境,就是用代码写成的仿真器,在其中加入物理引擎,把万有引力、摩擦等等逻辑加入到环境中,让仿真环境更接近现实环境。你可以在仿真环境中建立各种形状的对象和地形,将模拟出的智能体放在里面一遍遍的跑。

目前两个最常见的仿真环境都是马斯克OpenAI的作品:Gym和Universe,前者自由度更高,后者则更加复杂。除了这两个仿真器,还有很多人在游戏环境中训练智能体——物理引擎技术本来就是应用于游戏之中,比如Minecraft、GTA这样的沙盒游戏。后来被丧心病狂的开发者们发现并利用了起来。像DeepMind就曾经在GAT5里训练了一辆无人车。

在仿真环境中训练AI本质上就是一种迁移学习,在低成本环境中进行大量训练、制造大量训练数据,再从数据中提取特征应用到现实环境里,虽然不能完全替代现实训练,却可以极大的减少对现实训练的依赖。

或者让机器人学会预见未来?

建立仿真环境还不够,为了让机器人们更有尊严的学习,伯克利的研究人员们正在研究一种名为“预见视觉”的技术。

我们可以想一想,为什么人们如此注重机器人现实训练和现实应用中产生的数据呢?是因为机器人不像人类,感官和动作都通过大脑相连,机器人即使能看到周围的环境,也很难理解自己的行为会对周围对象造成什么影响。

经过训练,机器手臂知道如何去拾取桌上的水果。可在现实应用时,如果在水果正前方有一杯水,结果往往有两个:一,机器手臂直直的伸出去,碰翻了那杯水。二,机器手臂转来转去,不知如何是好。

可人类就能绕过那杯水拿起水果,因为我们知道如果直接伸手,水会被打翻。

伯克利的实验就是给机器人一个摄像头,然后把机器人放到任何一个环境中让它们自己玩耍。而摄像头背后的“大脑”则在利用循环卷积网络对机器人看到的画面进行分析,很快就能实现对接下来几秒画面的预测。

几秒的预测虽然很短,却让机器人能预见自己动作之后的情况。理想情况下,就不太容易出现那种为了执行任务把周遭环境弄得一团糟的情况了。

预见视觉技术的应用,也让无监督学习在机器人训练的比重中加大,人类节省了时间,机器人也不用再受虐待。而预见视觉能力得到进一步增强,也会意味着机器智能(尤其是无人驾驶汽车)对传感器依赖的减少。现在的无人车上贴满了雷达传感器,就是要依靠这些传感器提醒汽车:你离物体太近了!再往前会受伤!有了预见视觉,一个全景摄像头就能替代这些昂贵的传感器。

费尽心机,只想让你记得我的好

除了以上两项,我们还想了很多帮助机器人学习的方法。

像是伯克利之前展示过的模仿学习,把人类动作示范排成视频,一帧帧的提取出动作序列聚类到机器人的动作单元中。担心机器人无法面对现实生活中的种种BUG?没关系,不用像波士顿动力那样刻意制造BUG,只需要在训练视频中加入一点噪声,一边强化学习一边生成训练样本帮机器人纠错就行了。

又或者,OpenAI曾经尝试过让机器人们互相对战并从中进行自我训练。为机器人们设立简单的目标,比如把对手推倒,再加上一些奖励政策,机器人们就能从对战中学会很多动作了。虽然让机器人自相残杀也很残忍,但或许这样能让他们记恨同胞而不是我们……

总之,虽然现实环境一定是机器人训练不可或缺的一部分,尤其是对波士顿动力这种动作机器人而言。但人类一直在尝试如何少去亲自掺和机器人训练,不仅仅是为了机器人道主义,也为了尽可能降低训练这件事带来的成本。

希望在未来,每个机器人都能有尊严的学习。并且在自我觉醒后记得人类的好。

*文章为作者独立观点,不代表虎嗅网立场

本文由脑极体授权虎嗅网发表,并经虎嗅网编辑。转载此文请于文首标明作者姓名,保持文章完整性(包括虎嗅注及其余作者身份信息),并请附上出处(虎嗅网)及本页链接。原文链接:http://www.huxiu.com/article/225336.html

未按照规范转载者,虎嗅保留追究相应责任的权利未来面前,你我还都是孩子,还不去下载虎嗅App猛嗅创新! +10

说点什么登录后参与评论

本文来自企鹅号 - 虎嗅媒体

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏量子位

量子计算的里程碑:用超算模拟45个量子位(附论文)

陈桦 编译 量子位 报道 | 公众号 QbitAI ? 关于量子计算机性能超越传统计算机这一关键转折点,计算机科学家有个专有名词,即“量子霸权”。从各方面来看,...

3194
来自专栏机器人网

国际机器人与自动化大会重点推介的20种创新机器人技术

最近在瑞典斯德哥尔摩召开的“国际机器人与自动化大会”(ICRA)向世人展示了该领域最新的设计和创意理念,从飞行运输、环保检测、工业制造到休闲生活娱乐,形形色色的...

3437
来自专栏机器人网

“人工迷你大脑”像蜜蜂那样思考

欧洲机器人研究团队开发了一种带有“人工迷你大脑”的机器人,这种机器人参考了蜜蜂的思维方式,可以自己学习怎样对周围的环境做出反应。 NeuroRover外形小巧,...

2574
来自专栏企鹅号快讯

扫描复制大脑,实现数字化“长生不老”?

逝者如斯,不舍昼夜。每想到生命终将逝去,不禁“蓝瘦香菇”。有没有可能,充分扫描特定个体的大脑,构造一件精神复制品,当斯人逝去,开启这个复制品让它生活在一个虚拟的...

1719
来自专栏AI科技大本营的专栏

应对AI失控,研究人员提出用“人格障碍治疗”解决问题

【AI 科技大本营导读】随着人工智能 (AI) 技术和应用的普及,人们对于 AI 的认识不再只是一种智能机器。近日,麻省理工的研究团队构建了一个有精神病倾向的...

933
来自专栏人工智能快报

麻省理工提出便捷的机器人学习方法

美国麻省理工学院(MIT)网站发布消息称,该校已经提出了一种更便捷的机器人训练方法。 大多数机器人使用以下两种方法中的一种进行编程:从演示中学习,观察任务完成的...

3466
来自专栏AI科技评论

重磅丨直击百度大脑VS最强大脑王峰:跟人类比人脸识别,这卖相远不如跟人类比下棋

不得不说,江苏卫视选择在一个很好的时机播出了这段早已录制好的人机大战节目。 AlphaGo 本周刚以 Master 的名字在围棋赛中横扫中日韩高手斩获 60 连...

3325
来自专栏企鹅号快讯

看机器学习和商业智能如何改善医疗保健的

商业智能概念,如描述性,诊断性,预测性和规范性分析,听起来像医学术语,实际上可以用于挽救生命的医疗保健方式。 在以患者和以人为中心的医疗保健领域,我们对机器学习...

2018
来自专栏AI科技大本营的专栏

全网首发|如何不费吹灰之力就搞懂大脑的运行原理?这是有史以来最深入浅出的一篇科普文章了(《Neuralink》编译系列二)

昨天,我们全网首发了Tim Urban所撰写的,关于马斯克新公司Neuralink的科普文章的第一部分。 不过,那仅仅是个开胃汤,真正的热菜还没端上桌。 今...

36412
来自专栏ATYUN订阅号

这架无人机使用AI来自动创造完美的电影镜头

无人机逐渐成为艺术家最好的朋友,它们可以帮助业余爱好者和经验丰富的电影制作人创造流畅和美观的视频。然而,无人机用于电影摄影是非常具有挑战性的,因为它需要熟练的无...

914

扫码关注云+社区