图像增强︱window7+opencv3.2+keras/theano简单应用(函数解读)

在服务器上安装opencv遇到跟CUDA8.0不适配的问题,于是不得不看看其他机器是否可以预装并使用。 .

一、python+opencv3.2安装

opencv在windows安装为啥这么简单? 安装流程: 1、下载opencv文件opencv-3.2.0-vc14.exe 2、点击下载,其实就是解压过程,随便放在一个盘里面。 3、python部署阶段, 进入OpenCV的安装目录下找到+复制:\build\python\2.7\x64\cv2.pyd 将cv2.pyd复制到python的子目录:\Lib\site-packages\ 4、即可直接调用:

import cv2

.

二、windows+keras/theano

Keras深度学习框架是基于Theano或Tensorflow框架安装的,所以首先要准备底层框架的搭建,用tensorflow比较麻烦,所以选用Theano安装即可。

1、tensorflow/keras框架

同时如果要使用tensorflow0.12版本+python3.5及以上,也可以使用Anaconda 3.5. 一种比较好的方式使用docker: 参考:TensorFlow 官方文档中文版、下载与安装

如果要使用原生的window安装:

  • (1)前提:现有了python3.5或Anaconda 3.5
  • (2)下载:tensorflow-0.12.0rc0-cp35-cp35m-win_amd64.whl,下载的东西放在某文件夹中
  • (3)在Power Shell中输入下述命令实现本地安装:
pip install F:\DevResources\tensorflow_gpu-0.12.0rc0-cp35-cp35m-win_amd64.whl
  • (4)验证安装

到“所有程序”下找到”Python 3.5 64bit”,出现命令窗口,输入测试代码:

>>>import tensorflow as tf
>>>sess = tf.Session()
>>>a = tf.constant(10)
>>>b = tf.constant(22)
>>>print(sess.run(a + b))
32

正确输出32则为成功安装。

报错无法正常下载numpy 1.11.0:参考博客:原生Windows安装TensorFlow 0.12方法 .

2、theano/keras框架

安装过程:

  • (1)安装theano,Power Shell中输入:
pip install theano -U --pre
  • (2)安装keras:
pip install keras -U --pre
  • (3)修改默认后端:很关键,不然会一直报错:ImportError: No module named tensorflow 因为,keras默认后端是给tensorflow, 打开C:\Users\当前用户名.keras,修改文件夹内的keras.json文件如下:
{
"image_dim_ordering":"th",
"epsilon":1e-07,
"floatx":"float32",
"backend":"theano"
}
  • (4)验证安装
>>>import keras
Using Theano(Tensorflow) backend.
>>>

当然,还有theano的加速模式,可参考: Keras安装和配置指南(Windows) .

三、用python+keras/theano进行图像增强(Data Augmentation)

1、图像增强的方式

以下一共有8中图像变换的方式:

  • 旋转 | 反射变换(Rotation/reflection): 随机旋转图像一定角度; 改变图像内容的朝向;
  • 翻转变换(flip): 沿着水平或者垂直方向翻转图像;
  • 缩放变换(zoom): 按照一定的比例放大或者缩小图像;
  • 平移变换(shift): 在图像平面上对图像以一定方式进行平移; 可以采用随机或人为定义的方式指定平移范围和平移步长, 沿水平或竖直方向进行平移. 改变图像内容的位置;
  • 尺度变换(scale): 对图像按照指定的尺度因子, 进行放大或缩小; 或者参照SIFT特征提取思想, 利用指定的尺度因子对图像滤波构造尺度空间. 改变图像内容的大小或模糊程度;
  • 对比度变换(contrast): 在图像的HSV颜色空间,改变饱和度S和V亮度分量,保持色调H不变. 对每个像素的S和V分量进行指数运算(指数因子在0.25到4之间), 增加光照变化;
  • 噪声扰动(noise): 对图像的每个像素RGB进行随机扰动, 常用的噪声模式是椒盐噪声和高斯噪声;
  • 颜色变换(color): 在训练集像素值的RGB颜色空间进行PCA, 得到RGB空间的3个主方向向量,3个特征值 .

2、图像增强的案例

网上有一个极为广泛的套路,参考博客《深度学习中的Data Augmentation方法和代码实现》、《深度学习中的数据增强实现(Data Augmentation)》、《keras中文文档-图片预处理》

from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img

# 主要的增强函数
datagen = ImageDataGenerator(
        rotation_range=0.2,
        # 整数,旋转范围, 随机旋转(0-180)度
        width_shift_range=0.2,
        # 浮点数,以图像的长宽小部分百分比为变化范围进行横向平移
        height_shift_range=0.2,
        # 浮点数,以图像的长宽小部分百分比为变化范围进行竖直平移
        shear_range=0.2,
        # 浮点数,水平或垂直投影变换
        zoom_range=0.2,
        # 浮点数,随机缩放的幅度,[lower,upper] = [1 - zoom_range, 1+zoom_range]
        horizontal_flip=True,
        # 布尔值,进行随机水平翻转
        fill_mode='nearest')
        # 填充像素,超出边界时,有四种方式:‘constant’、‘nearest’、‘reflect’、‘wrap’
# featurewise_center=True  # 使输入数据集去中心化(均值为0)
# featurewise_std_normalization=True #将输入除以数据集的标准差以完成标准化
# rescale=1./255,#重放缩因子,默认为None. 如果为None或0则不进行放缩,否则会将该数值乘到数据上(在应用其他变换之前)
# zca_whitening=True #对输入数据施加ZCA白化
# channel_shift_range=0.2 #随机通道偏移的幅度
# vertical_flip=True #布尔值,进行随机竖直翻转



#数据导入
img = load_img('C:\\Users\\Desktop\\003.jpg')  
x = img_to_array(img)  
x = x.reshape((1,) + x.shape)  
# the .flow() command below generates batches of randomly transformed images
# and saves the results to the `preview/` directory
i = 0
for batch in datagen.flow(x, 
                          batch_size=1,
                          save_to_dir='C:\\Users\\Desktop',  
                          #存放文件夹
                          save_prefix='lena', 
                          #存放文件名字
                          save_format='jpg'):
    i += 1
    if i > 20:
        break 

其中: ImageDataGenerator是图像增强的主要函数,里面包含了很多类型的增强方法 load_img、img_to_array、x.reshape图像载入函数 datagen.flow,增强执行函数

其中:

  • load_img函数:
load_img(path, grayscale=False, target_size=None)
#path:图像载入的路径
#grayscale:是否只载入灰度,默认为false
#target_size:是否需要重新框定大小,默认是原图大小,其中如果要修改,则类似:
image.load_img(img_path, target_size=(224, 224))
  • img_to_array函数:
img_to_array(img, dim_ordering='default')
#img,load_img之后的内容
#dim_ordering,图像的格式是否更改,一般是default,不做任何更改

函数源码来源: https://github.com/fchollet/keras/blob/master/keras/preprocessing/image.py

.

延伸一:win下theano安装报错

ImportError: cannot import name gof

网上的解决方案为:

pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git

但是windows里面没有git,于是我安装了git之后,执行上述内容,的确安装完成,但是就是Import不了… 无解了….

也有人说重新安装theano

http://blog.csdn.net/zhouyongsdzh/article/details/24449645 .

延伸二:python中常用数据增强的library

下面这个Github的作者做了一个library, 实现了N种 data augmentation, 还嫌你的数据太少吗。。。试试吧!! 输入一只小老鼠,输出一窝小老鼠。 github地址:https://github.com/aleju/imgaug

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏北京马哥教育

20行 Python 代码实现验证码识别

一、探讨 识别图形验证码可以说是做爬虫的必修课,涉及到计算机图形学,机器学习,机器视觉,人工智能等等高深领域…… 简单地说,计算机图形学的主要研究内容就是研究如...

4448
来自专栏FD的专栏

10种深度学习算法的TensorFlow实现

这个 repository 是使用 TensorFlow 库实现的多种深度学习算法的实现。这个软件包的目标是作为一种命令行实用程序——你可以将其用来快速训练和评...

1114
来自专栏CreateAMind

Attribute2Image: 根据要求属性生成图片-视频及代码

Attribute2Image: Conditional Image Generation from Visual Attributes

832
来自专栏有趣的Python

2- OpenCV+TensorFlow 入门人工智能图像处理-opencv入门

本章内容 Anaconda一站式开发环境 OPenCV基础入门(像素,图片的封装格式,编码格式) TensorFlow基础入门 本章主要内容 OpenCV初识 ...

3635
来自专栏北京马哥教育

Kmeans聚类代码实现及优化

云豆贴心提醒,本文阅读时间6分钟 这篇文章直接给出上次关于Kmeans聚类的篮球远动员数据分析案例,最后介绍Matplotlib包绘图的优化知识。 希望这篇文...

2835
来自专栏ATYUN订阅号

【深度学习】图片风格转换应用程序:使用CoreML创建Prisma

WWDC 2017让我们了解了苹果公司对机器学习的看法以及它在移动设备上的应用。CoreML框架使得将ML模型引入iOS应用程序变得非常容易。 ? 大约一年前,...

4068
来自专栏CreateAMind

dcgan人脸生成效果复现-多图及代码学习

https://github.com/carpedm20/DCGAN-tensorflow

941
来自专栏CreateAMind

ROS探索总结(十二)——坐标系统

在机器人的控制中,坐标系统是非常重要的,在ROS使用tf软件库进行坐标转换。

581
来自专栏人工智能LeadAI

OpenCV人脸识别之三:识别自己的脸

本系列人脸识别文章用的是opencv2,最新版的opencv3.2的代码请参考文章: OpenCV之识别自己的脸——C++源码放送(请在上一篇文章末尾查看) ...

4094
来自专栏机器之心

教程 | 如何在浏览器使用synaptic.js训练简单的神经网络推荐系统

3524

扫码关注云+社区