Vehicle Logo Recognition System Based on Convolutional Neural Networks With a Pretraining Strategy

论文笔记Ⅰ 基于卷积神经网络的车辆标记识别系统

考虑文章中一些语法以及用词还挺好,先记录一下,留下来以后可能用到自己的paper中。

Abstract

由于车辆的标志是一辆车品牌最明显的指标,大多数汽车品牌识别(VMR) 都是基于车辆标志识别的方法。在本文中,提出了一个卷积神经网络(CNN)系统,消除了VMR精确标识检测和分割的要求。另外一个有效预训练策略被用来降低内核训练的高计算成本。数据集包含11500车辆标志图像并且被分为10类,其中10000用来训练和1500用来进行测试。最终的到的平均准确率为99.07%。 说明:其中两点是不同于lenet5网络结构的,第一个就是如何从一个复杂的大图像中分割和检测出车标,得到最终输入到卷积神经网络的图像;第二个就是有效的预训练——PCA是如何处理,来提高了准确率以及降低训练样本的时间。

Introduction

引言中指出了paper的两个点: ①a PCA-based pretraining strategy(PCA预处理) ②a coarse segmentation approach(粗分割)

(a)从监控系统中捕获到完整的车辆图像 (b)然后检测到图像的车标部分 (c)和(d)蓝色方框代表之前的精确检测(LPL)获得的区域,在图中明显发现蓝色方框未能准确框住大众车标,本文提出的粗分割其实就是检测到一个更大的区域,如图所示红色方框表示本文方法框住车标部分。 说明:①本文选取的车辆都是常见车辆,没有把SUV等一些车辆加入到数据集中,(SUV车标太大) ②车牌定位(License Plate Location,LPL) 系统,LPL 系统将输出车牌的角点坐标, 根据这四个坐标我们就可以得到其上方含有车标的一个大致区域。其参考文献:

Psyllos A P, Anagnostopoulos C N E, Kayafas E. Vehicle Logo Recognition Using a Sift-Based Enhanced Matching Scheme[J].

Framwork of Logo-based VMR

一 粗分割 主要就是上述引言中提到的LPL系统,个人认为这也是区域检测,和region detection有什么区别呢?是否可以使用这个LPL,用于自己数据集的区域检测呢? 二 预训练 文中谈到:The procedure used in (7) and(8) happens to be the same as PCA 那就先回顾一下PCA(主成分分析): 主成分分析与白化是在做深度学习训练时最常见的两种预处理的方法,主成分分析是一种我们用的很多的降维的一种手段,通过PCA降维,我们能够有效的降低数据的维度,加快运算速度。而白化就是为了使得每个特征能有同样的方差,降低相邻像素的相关性。 主成分分析(PCA)的原理就是将一个高维向量x,通过一个特殊的特征向量矩阵U,投影到一个低维的向量空间中,表征为一个低维向量y,并且仅仅损失了一些次要信息。也就是说,通过低维表征的向量和特征向量矩阵,可以基本重构出所对应的原始高维向量。 ① yij=wi ⊗ xj 第i个卷积核和第j张训练图片做卷积,为了得到y和x的尺寸一样大小则需要对x进行0填充 ②Y ij = WTi Xj 预训练的目的是找到核函数能够以最小的误差重建出输入图像。

同PCA白化处理差不多

Experimental Results

有三个疑问(忘知道的博友私信我): 首先按照文中的第二个卷积层的kernel size大小为21*21,卷积核如此大对结果有没有什么影响?还有就是为什么不加个卷积池化层? 其次最后的结果提高了1个百分点,PCA预训练到底对结果的正确率影响多大?提高的正确率是不是因为粗分割,把那些错位的车标识别出来了呢?

接下来 就是测试本文模型的鲁棒性,在其它数据集上进行测试

给个主成分分析(PCA)算法介绍的链接: http://www.cnblogs.com/liu-jun/archive/2013/03/20/2970132.html

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏CreateAMind

NVIDIA生成1024分辨率图片效果复现

https://github.com/tkarras/progressive_growing_of_gans

582
来自专栏计算机视觉与深度学习基础

【深度学习】使用tensorflow实现VGG19网络

转载注明出处:http://blog.csdn.net/accepthjp/article/details/70170217 接上一篇AlexNet,本文讲...

4889
来自专栏计算机视觉与深度学习基础

【深度学习】使用tensorflow实现VGG19网络

接上一篇AlexNet,本文讲述使用tensorflow实现VGG19网络。 VGG网络与AlexNet类似,也是一种CNN,VGG在2014年的 ILSV...

4314
来自专栏应兆康的专栏

16. 清理贴错标签的开发集和测试集样本

1051
来自专栏用户2442861的专栏

文本分类(六):使用fastText对文本进行分类--小插曲

http://blog.csdn.net/lxg0807/article/details/52960072

871
来自专栏图形学与OpenGL

实验四 二维几何变换

592
来自专栏华章科技

机器学习和深度学习视频资料精选(附学习资料)

pandax视频教程 链接: https://pan.baidu.com/s/1pLqavVX 密码: fath python入门到精通 链接: http...

1223
来自专栏iOSDevLog

开发机器学习应用程序的步骤

[美]Peter Harrington. 机器学习实战 (图灵程序设计丛书 72) (Kindle 位置 519-529). 人民邮电出版社. Kindle 版...

582
来自专栏瓜大三哥

形态学滤波(六)

形态学滤波(六) 之二维形态学腐蚀/膨胀子模块设计 按照二维扩展的思路,将每一行的一维算子的计算结果对齐在列方向上再进行一维运算,得到的结果即是二维运算结果。 ...

21310
来自专栏AI科技大本营的专栏

重磅消息 | 深度学习框架竞争激烈 TensorFlow也支持动态计算图

今晨 Google 官方发布消息,称 TensorFlow 支持动态计算图。 原文如下: 在大部分的机器学习中,用来训练和分析的数据需要经过一个预处理过程,输入...

2625

扫码关注云+社区