语音识别——ANN加餐

Dear junqiang:

Hello.

昨天学习了语音识别的基础知识,早上起床马不停蹄写了BP网络后,把语音识别的相关方法也写出来咯。

自己也在科大讯飞的语音识别组工作过将近2个月,语音识别是个很苦很酷的事情,讯飞的日子很丰富,依稀记得那个价值30万的讯飞听见产品抱在自己手上的“恐怖感觉”和“紧张刺激”。

纪念一下:

讯飞18岁,bingo~

接下来说一下语音识别,从以下几个方向展开(注意只是简单科普,具体写代码左转找梯子去Google):

语音识别的基本原理

语音识别基本原理

声学模型

语言模型

语音转写技术路线

基本分类

第三代语音识别框架

口语化和篇章语言模型技术

远场语音识别问题及其解决方案

语音转写后处理

语音转写个性化方案(未来)

我就非常粗暴的简单介绍:

———— 语音识别基本原理 ————

语音识别是门多学科的技术,简单说就是把“语音”转换成“文字”,主要分为ASR(Automatic Speech Recognition)和STT(Speech To Text)两大技术。

语音识别就如同“机器去读谱”

声音采集——>频率——>端点检测——>声学模型——>语音模型

频率:麦克风采集声音经过计算机处理得到“频率”,计算机上直观显示为“频率读谱”;

端点检测:识别频谱中哪些是语音段(有说话),哪些是静寂段(没有说话),即可准确识别出“哪些片段有说话”。

声学模型:即建模,把语音信号与拼音串(提前训练得出)建立联系。即可识别出“pinyin串”。

语音模型:也是建模,把拼音串与文字串建立联系。即可识别出“词串”。

上面说的几种模型如下(不懂具体没关系,大概知道有什么就好,后面具体说):

声音模型(Acoustic Model、AM)

这个是对发出的声音建模;

词W发音时对应生成的特征X向量的概率;

主要的框架有GM-HMM (高斯模糊-隐马尔可夫模型)、 DNN-HMM(深度神经网络-隐马尔可夫模型)

语音模型(Language Model、LM)

连续词串的建模,发音串对应某个词串的概率(累死于你拼音输入法输入拼音,出来一堆候选项);

需灵活的模型对所有可能出现的结果来进行描述;

主要的框架有N-Gram、RNN(递归神经网络)

解码(Decoding)

从声学模型与语音模型建立的庞大解空间向量中产生出概率最大的模型。

解空间:解空间是指齐次线性方程组所有解的集合构成一个向量空间(by百度百科)

下面对这几个模型详细介绍一哈~

声学模型

声学模型就是判断声音读谱的每一帧属于什么音素。

音素:

“声学建模”的大概过程如下,这个过程很简单,具体细节不必理解:

为了解决帧之间组合产生的混乱情况,发展出了各式解决办法 —— 语音识别框架。

第一代语音识别框架

这一代框架是HMM-GMM模型,HMM即隐马尔可夫模型,把“音素”转化到“状态”。这个模型解决这个过程中的概率选择。GMM即高斯混合模型,是整个框架的基础。

HMM-GMM框架分为五层。分别是:原始输入语音层、特征状态序列层、HMM模型层、声韵母序列层、词序列层。

原始输入语音层: 即为原始输入的频谱。

特征状态序列层:通过前面说到的Mel滤波器将频谱转为状态序列S1、S2、Sn

HMM模型层:将音素进行计算,转化为声韵母。

声韵母序列层:由HMM转化而来的声韵母序列的集合。

词序列层:这一系列声韵母转化为特定的词片段。

这是原始的第一代技术,后来逐步发展,又发展出来了第二代语音识别框架。

第二代语音识别框架

这一代的特点是把第一代的GMM替换为了DNN(深度神经网络)。

所有的状态都可以用一个模型来建模,共享一个输出 。由于DNN是分布式部署的,可以同时训练某个音素(比如“a”)及其反例。正反结合使得识别准确率更高。

基于HMM-RNN框架

DNN模型:

RNN模型:(有了中间的反馈)

由于RNN是前一时刻的隐层节点的输出作为当前时刻该隐层的输入,让这个网络有了“记忆的能力”,同时如果采用双向的反馈,也能“预测未来输出”。

由于语音输入是一个时序性很强的数据,所有RNN由于其“记忆”的天然优势,使得能很好地适用于这些语音的声学建模。

后来,当前也有使用CNN结合的框架,这也可以说是第三代技术吧。

第三代语音识别框架

这中模型中,结合了CNN(卷积神经网络),CNN各层所提取特征从局部到整体,降低了学习难度,减少了模型的尺寸大小。因为CNN原是用于图像识别的,有很好地记忆局部以及适应局部偏移的特性。

经过声学建模,频谱就会转变为音素序列集合,然后通过语言模型,就可以转为词序列。

语言模型

语言模型即是将“pinyin”转为“词串序列”。这个语言模型也有几代技术的更新迭代。

N-Gram结构模型

前期使用的是N-Gram策略。基本是通过前一个词的概率,计算后一个词的概率。人的常用语和词是有概率分布的咯,就和常用汉字一样哈。

但是由于N-Gram的建模能力有限,只能“看到”前面的三四个词,而且从来没有出现过的词是无法识别的,由于存在这些问题,故提出了RNN结构来优化。

RNN结构的语言模型

RNN模型能将“历史信息”保存到隐层中去,理论上能保存无限长的历史记录;

输入W(t),当前词是Wi,用V维的0-1向量表示;

输出为y(t)为各个词Wj的概率;

将当前的V维音素向量输入,与先前的S(t-1)向量混合计算,生成当前的V维S(t)词串,并输出y(t)即词串中各个词的概率向量。

声音模型和语言模型都需要大量的数据喂养来建模,在通过解码技术后,方可使用。这也就是大数据下语音翻译技术有了长足进步的一方面原因。

———— 语音转写技术路线 ————

有了上述声学建模和语言建模的基础,我们来说一下最常接触到的“语音转写”。语音转写就是把语音转为文字。

语音转写分为:语音听写和语音转写两大类。

按照学术界的分类方法:

语音听写(Dictation):实时地语音识别

语音转写(Transcription):非实时地语音识别

按照工业界的分类方法:

语音听写:面向人机对话的系统,比如语音输入法

语音转写:面向人人对话的系统,比如会议转写系统,我原先在的“讯飞听见”部门就是这个方向的。

介绍一下当前热门的第三代语音识别框架模型

第三代语音识别框架

这是End-End的系统,即输入语音频谱,最后直接输出文字,无需其他系统的参与,实现了声学模型和语言模型的混合。基于Enc-Dec框架(这是啥?你想知道,我也不懂,还需学习…)

这个模型结合了负向和正向的识别,使得准确率能够大幅提高。

第三代的语音转写技术识别率已经很高,在普通话情况下基本可以识别准确,但当前也存在一些问题。

口语化和篇章语音模型技术

人在说话时,会带入口语化词、回读、重读“嗯啊”等无意义词汇。

可以采用“加噪训练”,即在训练语言模型时就人为刻意地加入这些“noise”进行训练,可以使得最后的口语识别率大大提高。同时由于RNN的记忆优势,也可以采用上下文结合分析的方式,即“篇章语音模型技术”来更加准确地判断。

远场语音识别问题

远场是说我们距离收音的设备距离较远,会产生一系列的噪声问题,如混响、背景噪声、人声干扰、回声等噪声。

混响:

如何解决远场语音识别问题?

工业界如何解决远场问题呢?工业界普遍采用麦克风阵列技术+深度学习 来解决问题。

麦克风阵列:

麦克风阵列 + 深度学习 的解决方式:

在上述的方式后,即可解决语音转写。但即使这个过程的准确率百分百准确,最后的文章的阅读性也是极差的,我们说的话如果一字不差的写出来,无法想象…(震惊)

这时候,口语如何更好地处理 —— 语音转写后处理技术,解决口语 与 用户理解的书面语之间的转换。

语音转写后处理技术

这个技术基本的过程:断句——>文本顺滑、口语规整——>标点——>分段

断句:根据习惯,将字符串分成不同子句。

文本顺滑:去除语义词、重复词、口语化词、无意义词等。

标点:预测标点“, 。 ! ?……”

预测分段:根据前后文语义来分段。

———— 总结 ————

语音转写涉及到了CNN(更好地掌握宏观)、DNN(更好地降噪和处理)、RNN(更好地识别声学模型),是现在神经网络当前热门技术的综合应用,十分好玩。

好,结束,吃饭。

Sincerely

俊强

2017年12月9日 8:19:07

学习内容来自讯飞听见及网络,整理简化得。

本文来自企鹅号 - 全球大搜罗媒体

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏深度学习入门与实践

【深度学习Deep Learning】资料大全

  最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books Deep Learning66 by Yosh...

4839
来自专栏机器学习算法全栈工程师

一种简单有效的网络结构搜索

这篇文章主要介绍了一种方法用于解决网络结构搜索中,搜索空间过大且训练时间过长,算力要求过高的问题。运用了爬山算法来搜索优秀的网络结构,主要是用了一个很nb的技术...

861
来自专栏专知

【干货荟萃】机器学习&深度学习知识资料大全集(二)(论文/教程/代码/书籍/数据/课程等)

【导读】转载来自ty4z2008(GItHub)整理的机器学习&深度学习知识资料大全荟萃,包含各种论文、代码、视频、书籍、文章、数据等等。是学习机器学习和深度学...

32412
来自专栏人工智能头条

格灵深瞳:人脸识别最新进展以及工业级大规模人脸识别实践探讨 | 公开课笔记

1202
来自专栏机器之心

资源 | 从图像处理到语音识别,25款数据科学家必知的深度学习开放数据集

选自Analytics Vidhya 作者:Pranav Dar 机器之心编译 参与:陈韵竹、路 本文介绍了 25 个深度学习开放数据集,包括图像处理、自然语言...

2724
来自专栏专知

一文看全ACL 2018亮点:表示学习和更具挑战性环境下的模型评价

【导读】第56届ACL大会于2018年7月15日至20日在澳大利亚墨尔本举行,Sebastian Ruder参加了会议并发表了三篇论文,并分享了他的参会感想,点...

910
来自专栏量子位

Facebook的新AI「Rosetta」会识别表情包,还会删帖丨论文

不过,表情包上的那些网络金句都是.jpg或者.gif的图片格式,无法被搜索、无法被计算机监测,字太小不清晰的时候还会让视力不好的同学看不清楚。

672
来自专栏计算机视觉战队

人脸检测与识别总结

上半年跨度到下半年之后,深度学习又进一步推送到了AI的顶端,很多领域都开始涉及到Deep Learning,而在人脸领域,已经被广泛应用,今天本平台再一次详细说...

4124
来自专栏量子位

4位谷歌工程师8分钟视频,带你了解计算机视觉(有字幕)

安妮 编译整理 量子位 报道 | 公众号 QbitAI 到底什么是计算机视觉? 计算机视觉离我们并不遥远。我们经常挂在嘴边的AR、自动驾驶、人脸识别都是计算机视...

3537
来自专栏AI科技评论

开发 | 这六段代码隐藏着深度学习的前世今生!

AI科技评论按:本文作者Emil Wallner用六段代码解释了深度学习的前世今生,这六段代码覆盖了深度学习几十年来的重大创新和突破,作者将所有代码示例都上传了...

3317

扫码关注云+社区