谷歌教你学 AI-第三讲简单易懂的估算器

翻译/校对: Mika

本文为 CDA 数据分析师原创作品,转载需授权

Google 发布了名为"AI Adventures"的系列视频,用简单易懂的语言让初学者了解机器学习的方方面面。

前两期我们分别讲到了机器学习的概念和具体步骤,今天让我们来看到第三讲,使用TensorFlow Estimator进行机器学习。

CDA字幕组目前在对该系列视频进行汉化,之后将继续连载,欢迎关注和支持~

主讲人还是来自Google Cloud的开发人员,华裔小哥Yufeng Guo。让我们在学习AI知识的同时来提高英语吧。

附有中文字幕的视频如下:

AI Adventures--第三讲简单易懂的估算器

针对不方便打开视频的小伙伴,CDA字幕组也贴心的整理了文字版本,如下:

机器学习棒极了,除了它迫使你用到高数的时候。进行机器学习的工具得到了极大地发展,训练模型也从未如此简单。

我们将利用对数据集的理解,而不是对纯粹数学知识的理解,以此编程得出模型,最终得出相应见解。在本期视频,我们将用少部分代码训练一个简单的分类器。

TensorFlow Estimator

为了训练分类器,我们将使用TensorFlow。谷歌的开源机器学习库。 TensorFlow有很庞大的API,但是我们要关注的是当中的高级API,称为Estimator(估算器)

Estimator为我们把训练循环打包起来,这样我们可以通过配置来训练模型,而不是手工进行编程。从而去除了许多样板文件,让我们在更高的层面上思考抽象问题。意味着我们能够参与到机器学习有意思的部分,而不用为各个细节而烦恼。

由于目前为止我们只涉及到线性模型,因此将主要围绕该部分。之后会再看到这个例子,用来拓展其能力。

鸢尾花分类

这次我们将构建一个模型,用来区分三种类似的花。我感觉这可能没有上一期区分葡萄酒和啤酒那么有意思,但是这些花朵更难区分,从而构成一项有趣的挑战。

我们将对不同种类的鸢尾花进行区分。我不确定我能区分鸢尾花和玫瑰,但是我们模型的目的是区分出山鸢尾(Iris Setosa)、杂色鸢尾(Iris Versicolour)和维吉尼亚鸢尾(Iris Virginica)。

山鸢尾(Iris Setosa)、杂色鸢尾(Iris Versicolour)和维吉尼亚鸢尾(Iris Virginica)

我们有鸢尾花卉数据集,包括花瓣和花萼长宽度数据。这四列将作为我们的“特征”。

加载数据

在引入TensorFlow和NumPy后,我们将加载数据集,使用TensorFlow的函数 。数据或者特征呈现为浮点数。同时每行数据或对象的标签记录为整型数(integer):0、1、2,对应三种花。

我输出了加载的结果,现在我们可以用命名的属性访问训练数据和相关标签或对象。

建立模型

下面我们开始建模。首先我们需要设定特征列。特征列决定了进入模型的数据类型。我们将用到四维特征列表示特征,称为“flower_features”。

使用估算器(estimator)建模超级简单。使用`tf.estimator.LinearClassifier`,我们可以通过传递之前创建的特征列让模型实例化;该模型得出的不同输出数字,比如这里是3;还有存储模型训练过程和输出文件的目录。这使TensorFlow能够在有需要的情况下,继续进行之前的训练。

输入函数

分类对象能帮我们记录状态,然后我们差不多可以进入训练阶段了。最后还有一个连接模型和训练数据的部分,即输入函数。输入函数的作用是创建TensorFlow操作,从而从模型中生成数据。

如今我们从原始数据到输入函数,通过数据,通过特征列的映射,进入到模型中。注意,我们对特征使用定义特征列的相同名称。这样数据才会是相关联的。

运行训练

现在可以开始训练了。为了训练模型,我们要运行classifier.train()函数,当中输入函数作为实参。就这样我们把数据集和模型连接起来。

训练函数处理训练回路,对数据集进行迭代,一步步提高性能。就这样我们完成了一千个训练步骤! 我们的数据集不大,因此完成得很快。

评估

现在该对结果进行评估了。我们可以使用之前相同的分类对象,因为这具有模型的训练状态。为了确定我们模型的性能,我们可以运行classifier.evaluate()函数,传递到测试数据集,从返回的指标中提取准确率。

我们的准确率为96.66%! 很不错嘛!!

Estimators: 简单的工作流程

让我们停下来,回顾一下使用Estimator我们目前实现了哪些成果。

Estimator API 为我们提供了很棒的工作流程,从获取原始数据,通过输入函数传递,设立特色列和模型结构,运行训练,进行评估。容易理解的框架让我们能够思考数据和其性能,而不是依赖数学,这太棒了!

下期预告

在本期视频中,我们看到了TensorFlow高级API中的一个简单版本,使用Estimator。在之后的视频中,我们将探究如何对模型进行扩展,使用更多复杂的数据,添加更多高级特征。

本文来自企鹅号 - CDA数据分析师媒体

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏田超学前端

【微信小程序】c# 实现获取openid、session_key 服务端

6400
来自专栏菩提树下的杨过

Silverlight:利用异步加载Xap实现自定义loading效果

关键点: 1.利用WebClient的DownloadProgressChanged事件更新下载进度 2.下载完成后,分析Xap包的程序集Assembly信息 ...

18610
来自专栏Golang语言社区

GO语言 TCP传输实例

package main import ( "net" "fmt" ) var ( maxRead = 1100 msgStop = []byt...

3436
来自专栏跟着阿笨一起玩NET

使用延迟的FileSystemWatcher来避免重复触发事件

  程序里需要监视某个目录下的文件变化情况: 一旦目录中出现新文件或者旧的文件被覆盖,程序需要读取文件内容并进行处理;但在实际处理中发现当一个文件产生变化时,C...

1082
来自专栏菩提树下的杨过

基于sliverlight + wcf的web 文字版IM 示例

演示地址: http://task.24city.com/default.html 预览界面: ? 一、布局 采用Grid布局,5行2列 第一行:为登录/注册信...

3266
来自专栏c#开发者

about store RecordField submit emptystring issue

operate screenshot When click save button submit to change,trace store before...

3457
来自专栏张善友的专栏

弹出式模态窗体选择文本控件

2006年就要到来了,最近比较忙,很少更新blog,今天发一个模态窗体选择文本控件辞旧迎新.新年在发几个asp.net2.0 webPart控件同各位分享: ...

1987
来自专栏木宛城主

曾今的代码系列——自己的分页控件+存储过程实现分页

项目里面的测试代码,仅供参考 LoginByAjax <title>Ajax登陆</title> <script src="Scripts/c...

1915
来自专栏互联网开发者交流社区

STC-单片机控制系统

1163
来自专栏技术之路

sqlserver 的事务和c#的事务

sql的事务 1 sql 2 create database model 3 go 4 use model 5 go 6 create table ...

1969

扫码关注云+社区