前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >tf24: GANs—生成明星脸

tf24: GANs—生成明星脸

作者头像
MachineLP
发布2018-01-09 11:37:18
1.1K0
发布2018-01-09 11:37:18
举报
文章被收录于专栏:小鹏的专栏小鹏的专栏

GANs是Generative Adversarial Networks的简写,中文翻译为生成对抗网络,它最早出现在2014年Goodfellow发表的论文中:Generative Adversarial Networks。GANs是目前深度学习领域最火的网络模型,苹果最近发布的第一篇论文就是关于GANs的:SimGAN。

简单来说,GANs会学着生成和训练数据相似的数据,一个最典型的应用是生成图像。假设你有一堆猫的图片,你使用这些图片训练GANs,之后它会生成和训练数据相类似的猫的图片(它习的了猫的特征)。

GANs用到机器学习的两种模型:Generative生成模型和Discriminative判别模型。

GANs类比:假设G是大伪艺术家,以制作古董赝品为生,G的终极目标是以假乱真。但是呢,又有一些人以鉴宝为生(D)。开始你给D展示了一些古董真品,告诉D这是正品。然后G开始制作赝品,想骗过D,让他分辨不出真假。随着D看到越来越多的真品,G要骗过D就越来越难,当然,G也不是吃闲饭的,它会加倍努力的试图骗过D。随着这种对抗的持续,不仅D鉴宝的本领提高了,G也会越来越擅长制作赝品。这就是名字中生成-对抗的意思。

判别模型可以判断数据属于哪一类,例如<TensorFlow练习23: 恶作剧>训练的CNN模型可以判断一张脸是不是我的脸。相反,生成模型不用预先知道分类,它可生成最符合训练样本分布的新样本。例如高斯混合模型,经过训练,它生成的随机数据符合训练样本的分布。

GANs简单图示:

生成对抗网络GANs
生成对抗网络GANs
GAN相关代码实现:
一个TensorFlow代码示例(生成明星脸-EBGAN)

使用的数据集:Large-scale CelebFaces Attributes (CelebA) Dataset,这个数据集包含20万明星脸,可用来做人脸检测、人脸特征识别等等任务。

下载地址:Google DriveBaidu云

TensorFlow练习24: GANs-生成对抗网络 (生成明星脸)
TensorFlow练习24: GANs-生成对抗网络 (生成明星脸)

代码:

代码语言:javascript
复制
# -*- coding: utf-8 -*-
"""
Energy Based Generative Adversarial Networks (EBGAN): https://arxiv.org/pdf/1609.03126v2.pdf
<blog.topspeedsnail.com>
由于我把Python升级到了3.6破坏了开发环境, 暂时先使用Python 2.7 
"""
import os
import random
import numpy as np
import tensorflow as tf
import cv2
import scipy.misc as misc
 
CELEBA_DATE_DIR= 'img_align_celeba'
 
train_images = []
for image_filename in os.listdir(CELEBA_DATE_DIR):
	if image_filename.endswith('.jpg'):
		train_images.append(os.path.join(CELEBA_DATE_DIR, image_filename))
 
random.shuffle(train_images)
 
batch_size = 64
num_batch = len(train_images) // batch_size
 
# 图像大小和channel
IMAGE_SIZE = 64
IMAGE_CHANNEL = 3
 
def get_next_batch(pointer):
	image_batch = []
	images = train_images[pointer*batch_size:(pointer+1)*batch_size]
	for img in images:
		image = cv2.imread(img)
		image = cv2.resize(image, (IMAGE_SIZE, IMAGE_SIZE))
		image = image.astype('float32') / 127.5 - 1
		image_batch.append(image)
	return image_batch
 
# noise
z_dim = 100
noise = tf.placeholder(tf.float32, [None, z_dim], name='noise')
 
X = tf.placeholder(tf.float32, [batch_size, IMAGE_SIZE, IMAGE_SIZE, IMAGE_CHANNEL], name='X')
# 是否在训练阶段
train_phase = tf.placeholder(tf.bool)
 
# http://stackoverflow.com/a/34634291/2267819
def batch_norm(x, beta, gamma, phase_train, scope='bn', decay=0.9, eps=1e-5):
	with tf.variable_scope(scope):
		#beta = tf.get_variable(name='beta', shape=[n_out], initializer=tf.constant_initializer(0.0), trainable=True)
		#gamma = tf.get_variable(name='gamma', shape=[n_out], initializer=tf.random_normal_initializer(1.0, stddev), trainable=True)
		batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2], name='moments')
		ema = tf.train.ExponentialMovingAverage(decay=decay)
 
		def mean_var_with_update():
			ema_apply_op = ema.apply([batch_mean, batch_var])
			with tf.control_dependencies([ema_apply_op]):
				return tf.identity(batch_mean), tf.identity(batch_var)
 
		mean, var = tf.cond(phase_train, mean_var_with_update, lambda: (ema.average(batch_mean), ema.average(batch_var)))
		normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, eps)
	return normed
 
# 重用变量出了点问题, 先用dict
generator_variables_dict = {
	"W_1": tf.Variable(tf.truncated_normal([z_dim, 2 * IMAGE_SIZE * IMAGE_SIZE], stddev=0.02), name='Generator/W_1'),
	"b_1": tf.Variable(tf.constant(0.0, shape=[2 * IMAGE_SIZE * IMAGE_SIZE]), name='Generator/b_1'),
	'beta_1': tf.Variable(tf.constant(0.0, shape=[512]), name='Generator/beta_1'),
	'gamma_1': tf.Variable(tf.random_normal(shape=[512], mean=1.0, stddev=0.02), name='Generator/gamma_1'),
 
	"W_2": tf.Variable(tf.truncated_normal([5, 5, 256, 512], stddev=0.02), name='Generator/W_2'),
	"b_2": tf.Variable(tf.constant(0.0, shape=[256]), name='Generator/b_2'),
	'beta_2': tf.Variable(tf.constant(0.0, shape=[256]), name='Generator/beta_2'),
	'gamma_2': tf.Variable(tf.random_normal(shape=[256], mean=1.0, stddev=0.02), name='Generator/gamma_2'),
 
	"W_3": tf.Variable(tf.truncated_normal([5, 5, 128, 256], stddev=0.02), name='Generator/W_3'),
	"b_3": tf.Variable(tf.constant(0.0, shape=[128]), name='Generator/b_3'),
	'beta_3': tf.Variable(tf.constant(0.0, shape=[128]), name='Generator/beta_3'),
	'gamma_3': tf.Variable(tf.random_normal(shape=[128], mean=1.0, stddev=0.02), name='Generator/gamma_3'),
 
	"W_4": tf.Variable(tf.truncated_normal([5, 5, 64, 128], stddev=0.02), name='Generator/W_4'),
	"b_4": tf.Variable(tf.constant(0.0, shape=[64]), name='Generator/b_4'),
	'beta_4': tf.Variable(tf.constant(0.0, shape=[64]), name='Generator/beta_4'),
	'gamma_4': tf.Variable(tf.random_normal(shape=[64], mean=1.0, stddev=0.02), name='Generator/gamma_4'),
 
	"W_5": tf.Variable(tf.truncated_normal([5, 5, IMAGE_CHANNEL, 64], stddev=0.02), name='Generator/W_5'),
	"b_5": tf.Variable(tf.constant(0.0, shape=[IMAGE_CHANNEL]), name='Generator/b_5')
}
# Generator
def generator(noise):
	with tf.variable_scope("Generator"):
		out_1 = tf.matmul(noise, generator_variables_dict["W_1"]) + generator_variables_dict['b_1']
		out_1 = tf.reshape(out_1, [-1, IMAGE_SIZE//16, IMAGE_SIZE//16, 512])
		out_1 = batch_norm(out_1, generator_variables_dict["beta_1"], generator_variables_dict["gamma_1"], train_phase, scope='bn_1')
		out_1 = tf.nn.relu(out_1, name='relu_1')
 
		out_2 = tf.nn.conv2d_transpose(out_1, generator_variables_dict['W_2'],  output_shape=tf.pack([tf.shape(out_1)[0], IMAGE_SIZE//8, IMAGE_SIZE//8, 256]), strides=[1, 2, 2, 1], padding='SAME')
		out_2 = tf.nn.bias_add(out_2, generator_variables_dict['b_2'])
		out_2 = batch_norm(out_2, generator_variables_dict["beta_2"], generator_variables_dict["gamma_2"], train_phase, scope='bn_2')
		out_2 = tf.nn.relu(out_2, name='relu_2')
 
		out_3 = tf.nn.conv2d_transpose(out_2, generator_variables_dict['W_3'],  output_shape=tf.pack([tf.shape(out_2)[0], IMAGE_SIZE//4, IMAGE_SIZE//4, 128]), strides=[1, 2, 2, 1], padding='SAME')
		out_3 = tf.nn.bias_add(out_3, generator_variables_dict['b_3'])
		out_3 = batch_norm(out_3, generator_variables_dict["beta_3"], generator_variables_dict["gamma_3"], train_phase, scope='bn_3')
		out_3 = tf.nn.relu(out_3, name='relu_3')
		
		out_4 = tf.nn.conv2d_transpose(out_3, generator_variables_dict['W_4'],  output_shape=tf.pack([tf.shape(out_3)[0], IMAGE_SIZE//2, IMAGE_SIZE//2, 64]), strides=[1, 2, 2, 1], padding='SAME')
		out_4 = tf.nn.bias_add(out_4, generator_variables_dict['b_4'])
		out_4 = batch_norm(out_4, generator_variables_dict["beta_4"], generator_variables_dict["gamma_4"], train_phase, scope='bn_4')
		out_4 = tf.nn.relu(out_4, name='relu_4')
 
		out_5 = tf.nn.conv2d_transpose(out_4, generator_variables_dict['W_5'],  output_shape=tf.pack([tf.shape(out_4)[0], IMAGE_SIZE, IMAGE_SIZE, IMAGE_CHANNEL]), strides=[1, 2, 2, 1], padding='SAME')
		out_5 = tf.nn.bias_add(out_5, generator_variables_dict['b_5'])
		out_5 = tf.nn.tanh(out_5, name='tanh_5')
 
		return out_5
 
discriminator_variables_dict = {
	"W_1": tf.Variable(tf.truncated_normal([4, 4, IMAGE_CHANNEL, 32], stddev=0.002), name='Discriminator/W_1'),
	"b_1": tf.Variable(tf.constant(0.0, shape=[32]), name='Discriminator/b_1'),
	'beta_1': tf.Variable(tf.constant(0.0, shape=[32]), name='Discriminator/beta_1'),
	'gamma_1': tf.Variable(tf.random_normal(shape=[32], mean=1.0, stddev=0.02), name='Discriminator/gamma_1'),
 
	"W_2": tf.Variable(tf.truncated_normal([4, 4, 32, 64], stddev=0.002), name='Discriminator/W_2'),
	"b_2": tf.Variable(tf.constant(0.0, shape=[64]), name='Discriminator/b_2'),
	'beta_2': tf.Variable(tf.constant(0.0, shape=[64]), name='Discriminator/beta_2'),
	'gamma_2': tf.Variable(tf.random_normal(shape=[64], mean=1.0, stddev=0.02), name='Discriminator/gamma_2'),
 
	"W_3": tf.Variable(tf.truncated_normal([4, 4, 64, 128], stddev=0.002), name='Discriminator/W_3'),
	"b_3": tf.Variable(tf.constant(0.0, shape=[128]), name='Discriminator/b_3'),
	'beta_3': tf.Variable(tf.constant(0.0, shape=[128]), name='Discriminator/beta_3'),
	'gamma_3': tf.Variable(tf.random_normal(shape=[128], mean=1.0, stddev=0.02), name='Discriminator/gamma_3'),
 
	"W_4": tf.Variable(tf.truncated_normal([4, 4, 64, 128], stddev=0.002), name='Discriminator/W_4'),
	"b_4": tf.Variable(tf.constant(0.0, shape=[64]), name='Discriminator/b_4'),
	'beta_4': tf.Variable(tf.constant(0.0, shape=[64]), name='Discriminator/beta_4'),
	'gamma_4': tf.Variable(tf.random_normal(shape=[64], mean=1.0, stddev=0.02), name='Discriminator/gamma_4'),
 
	"W_5": tf.Variable(tf.truncated_normal([4, 4, 32, 64], stddev=0.002), name='Discriminator/W_5'),
	"b_5": tf.Variable(tf.constant(0.0, shape=[32]), name='Discriminator/b_5'),
	'beta_5': tf.Variable(tf.constant(0.0, shape=[32]), name='Discriminator/beta_5'),
	'gamma_5': tf.Variable(tf.random_normal(shape=[32], mean=1.0, stddev=0.02), name='Discriminator/gamma_5'),
 
	"W_6": tf.Variable(tf.truncated_normal([4, 4, 3, 32], stddev=0.002), name='Discriminator/W_6'),
	"b_6": tf.Variable(tf.constant(0.0, shape=[3]), name='Discriminator/b_6')
}
# Discriminator
def discriminator(input_images):
	with tf.variable_scope("Discriminator"):
		# Encoder
		out_1 = tf.nn.conv2d(input_images, discriminator_variables_dict['W_1'], strides=[1, 2, 2, 1], padding='SAME')
		out_1 = tf.nn.bias_add(out_1, discriminator_variables_dict['b_1'])
		out_1 = batch_norm(out_1, discriminator_variables_dict['beta_1'], discriminator_variables_dict['gamma_1'], train_phase, scope='bn_1')
		out_1 = tf.maximum(0.2 * out_1, out_1, 'leaky_relu_1')
 
		out_2 = tf.nn.conv2d(out_1, discriminator_variables_dict['W_2'], strides=[1, 2, 2, 1], padding='SAME')
		out_2 = tf.nn.bias_add(out_2, discriminator_variables_dict['b_2'])
		out_2 = batch_norm(out_2, discriminator_variables_dict['beta_2'], discriminator_variables_dict['gamma_2'], train_phase, scope='bn_2')
		out_2 = tf.maximum(0.2 * out_2, out_2, 'leaky_relu_2')
 
		out_3 = tf.nn.conv2d(out_2, discriminator_variables_dict['W_3'], strides=[1, 2, 2, 1], padding='SAME')
		out_3 = tf.nn.bias_add(out_3, discriminator_variables_dict['b_3'])
		out_3 = batch_norm(out_3, discriminator_variables_dict['beta_3'], discriminator_variables_dict['gamma_3'], train_phase, scope='bn_3')
		out_3 = tf.maximum(0.2 * out_3, out_3, 'leaky_relu_3')
		encode = tf.reshape(out_3, [-1, 2*IMAGE_SIZE*IMAGE_SIZE])
 
		# Decoder
		out_3 = tf.reshape(encode, [-1, IMAGE_SIZE//8, IMAGE_SIZE//8, 128])
		
		out_4 = tf.nn.conv2d_transpose(out_3, discriminator_variables_dict['W_4'],  output_shape=tf.pack([tf.shape(out_3)[0], IMAGE_SIZE//4, IMAGE_SIZE//4, 64]), strides=[1, 2, 2, 1], padding='SAME')
		out_4 = tf.nn.bias_add(out_4, discriminator_variables_dict['b_4'])
		out_4 = batch_norm(out_4, discriminator_variables_dict['beta_4'], discriminator_variables_dict['gamma_4'], train_phase, scope='bn_4')
		out_4 = tf.maximum(0.2 * out_4, out_4, 'leaky_relu_4')
 
		out_5 = tf.nn.conv2d_transpose(out_4, discriminator_variables_dict['W_5'],  output_shape=tf.pack([tf.shape(out_4)[0], IMAGE_SIZE//2, IMAGE_SIZE//2, 32]), strides=[1, 2, 2, 1], padding='SAME')
		out_5 = tf.nn.bias_add(out_5, discriminator_variables_dict['b_5'])
		out_5 = batch_norm(out_5, discriminator_variables_dict['beta_5'], discriminator_variables_dict['gamma_5'], train_phase, scope='bn_5')
		out_5 = tf.maximum(0.2 * out_5, out_5, 'leaky_relu_5')
 
		out_6 = tf.nn.conv2d_transpose(out_5, discriminator_variables_dict['W_6'],  output_shape=tf.pack([tf.shape(out_5)[0], IMAGE_SIZE, IMAGE_SIZE, 3]), strides=[1, 2, 2, 1], padding='SAME')
		out_6 = tf.nn.bias_add(out_6, discriminator_variables_dict['b_6'])
		decoded = tf.nn.tanh(out_6, name="tanh_6")
 
		return encode, decoded
 
# mean squared errors
_, real_decoded = discriminator(X)
real_loss = tf.sqrt(2 * tf.nn.l2_loss(real_decoded - X)) / batch_size
 
fake_image = generator(noise)
_, fake_decoded = discriminator(fake_image)
fake_loss = tf.sqrt(2 * tf.nn.l2_loss(fake_decoded - fake_image)) / batch_size
 
# loss
# D_loss = real_loss + tf.maximum(1 - fake_loss, 0)
margin = 20
D_loss = margin - fake_loss + real_loss
G_loss = fake_loss # no pt
 
def optimizer(loss, d_or_g):
	optim = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.5)
	#print([v.name for v in tf.trainable_variables() if v.name.startswith(d_or_g)])
	var_list = [v for v in tf.trainable_variables() if v.name.startswith(d_or_g)]
	gradient = optim.compute_gradients(loss, var_list=var_list)
	return optim.apply_gradients(gradient)
 
train_op_G = optimizer(G_loss, 'Generator')
train_op_D = optimizer(D_loss, 'Discriminator')
 
with tf.Session() as sess:
	sess.run(tf.global_variables_initializer(), feed_dict={train_phase: True})
	saver = tf.train.Saver()
 
	# 恢复前一次训练
	ckpt = tf.train.get_checkpoint_state('.')
	if ckpt != None:
		print(ckpt.model_checkpoint_path)
		saver.restore(sess, ckpt.model_checkpoint_path)
	else:
		print("没找到模型")
 
	step = 0
	for i in range(40):
		for j in range(num_batch):
			batch_noise = np.random.uniform(-1.0, 1.0, size=[batch_size, z_dim]).astype(np.float32)
 
			d_loss, _ = sess.run([D_loss, train_op_D], feed_dict={noise: batch_noise, X: get_next_batch(j), train_phase: True})
			g_loss, _ = sess.run([G_loss, train_op_G], feed_dict={noise: batch_noise, X: get_next_batch(j), train_phase: True})
			g_loss, _ = sess.run([G_loss, train_op_G], feed_dict={noise: batch_noise, X: get_next_batch(j), train_phase: True})
 
			print(step, d_loss, g_loss)
 
			# 保存模型并生成图像
			if step % 100 == 0:
				saver.save(sess, "celeba.model", global_step=step)
 
				test_noise = np.random.uniform(-1.0, 1.0, size=(5, z_dim)).astype(np.float32)
				images = sess.run(fake_image, feed_dict={noise: test_noise, train_phase: False})
 
				for k in range(5):
					image = images[k, :, :, :]
					image += 1
					image *= 127.5
					image = np.clip(image, 0, 255).astype(np.uint8)
					image = np.reshape(image, (IMAGE_SIZE, IMAGE_SIZE, -1))
					misc.imsave('fake_image' + str(step) + str(k) + '.jpg', image)
 
			step += 1
fake_image23000
fake_image23000
fake_image19002
fake_image19002

2000step就出现了人脸的雏型,接着练吧,再改改参数。

ps.昨天做梦,梦见自己变成矩阵了,太诡异了。

Share the post "TensorFlow练习24: GANs-生成对抗网络 (生成明星脸)"

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2017年01月12日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • GAN相关代码实现:
  • 一个TensorFlow代码示例(生成明星脸-EBGAN)
相关产品与服务
图像识别
腾讯云图像识别基于深度学习等人工智能技术,提供车辆,物体及场景等检测和识别服务, 已上线产品子功能包含车辆识别,商品识别,宠物识别,文件封识别等,更多功能接口敬请期待。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档