【深度学习系列】用PaddlePaddle和Tensorflow实现GoogLeNet InceptionV2/V3/V4

上一篇文章我们引出了GoogLeNet InceptionV1的网络结构,这篇文章中我们会详细讲到Inception V2/V3/V4的发展历程以及它们的网络结构和亮点。

GoogLeNet Inception V2

GoogLeNet Inception V2在《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》出现,最大亮点是提出了Batch Normalization方法,它起到以下作用:

  • 使用较大的学习率而不用特别关心诸如梯度爆炸或消失等优化问题;
  • 降低了模型效果对初始权重的依赖;
  • 可以加速收敛,一定程度上可以不使用Dropout这种降低收敛速度的方法,但却起到了正则化作用提高了模型泛化性;
  • 即使不使用ReLU也能缓解激活函数饱和问题;
  • 能够学习到从当前层到下一层的分布缩放( scaling (方差),shift (期望))系数。

  在机器学习中,我们通常会做一种假设:训练样本独立同分布(iid)且训练样本与测试样本分布一致,如果真实数据符合这个假设则模型效果可能会不错,反之亦然,这个在学术上叫Covariate Shift,所以从样本(外部)的角度说,对于神经网络也是一样的道理。从结构(内部)的角度说,由于神经网络由多层组成,样本在层与层之间边提特征边往前传播,如果每层的输入分布不一致,那么势必造成要么模型效果不好,要么学习速度较慢,学术上这个叫InternalCovariate Shift。 

假设:yy为样本标注,X={x1,x2,x3,......}X={x1,x2,x3,......}为样本xx通过神经网络若干层后每层的输入;

理论上:p(x,y)p(x,y)的联合概率分布应该与集合XX中任意一层输入的联合概率分布一致,如:p(x,y)=p(x1,y)p(x,y)=p(x1,y);

但是:p(x,y)=p(y|x)⋅p(x)p(x,y)=p(y|x)·p(x),其中条件概率p(y|x)p(y|x)是一致的,即p(y|x)=p(y|x1)=p(y|x1)=......p(y|x)=p(y|x1)=p(y|x1)=......,但由于神经网络每一层对输入分布的改变,导致边缘概率是不一致的,即p(x)≠p(x1)≠p(x2)......p(x)≠p(x1)≠p(x2)......,甚至随着网络深度的加深,前面层微小的变化会导致后面层巨大的变化。

BN整个算法过程如下: 

  • 以batch的方式做训练,对m个样本求期望和方差后对训练数据做白化,通过白化操作可以去除特征相关性并把数据缩放在一个球体上,这么做的好处既可以加快优化算法的优化速度也可能提高优化精度,一个直观的解释:

   左边是未做白化的原始可行域,右边是做了白化的可行域;

  • 当原始输入对模型学习更有利时能够恢复原始输入(和残差网络有点神似):

  这里的参数γγ和σσ是需要学习的。

卷积神经网络中的BN

  卷积网络中采用权重共享策略,每个feature map只有一对γγ和σσ需要学习。

GoogLeNet Inception V3

GoogLeNet Inception V3在《Rethinking the Inception Architecture for Computer Vision》中提出(注意,在这篇论文中作者把该网络结构叫做v2版,我们以最终的v4版论文的划分为标准),该论文的亮点在于:

  • 提出通用的网络结构设计准则
  • 引入卷积分解提高效率
  • 引入高效的feature map降维

网络结构设计的准则

前面也说过,深度学习网络的探索更多是个实验科学,在实验中人们总结出一些结构设计准则,但说实话我觉得不一定都有实操性:

  • 避免特征表示上的瓶颈,尤其在神经网络的前若干层 

神经网络包含一个自动提取特征的过程,例如多层卷积,直观并符合常识的理解:如果在网络初期特征提取的太粗,细节已经丢了,后续即使结构再精细也没法做有效表示了;举个极端的例子:在宇宙中辨别一个星球,正常来说是通过由近及远,从房屋、树木到海洋、大陆板块再到整个星球之后进入整个宇宙,如果我们一开始就直接拉远到宇宙,你会发现所有星球都是球体,没法区分哪个是地球哪个是水星。所以feature map的大小应该是随着层数的加深逐步变小,但为了保证特征能得到有效表示和组合其通道数量会逐渐增加。   

下图违反了这个原则,刚开就始直接从35×35×320被抽样降维到了17×17×320,特征细节被大量丢失,即使后面有Inception去做各种特征提取和组合也没用。

  • 对于神经网络的某一层,通过更多的激活输出分支可以产生互相解耦的特征表示,从而产生高阶稀疏特征,从而加速收敛,注意下图的1×3和3×1激活输出:
  • 合理使用维度缩减不会破坏网络特征表示能力反而能加快收敛速度,典型的例如通过两个3×3代替一个5×5的降维策略,不考虑padding,用两个3×3代替一个5×5能节省1-(3×3+3×3)/(5×5)=28%的计算消耗。
  • 以及一个n×n卷积核通过顺序相连的两个1×n和n×1做降维(有点像矩阵分解),如果n=3,计算性能可以提升1-(3+3)/9=33%,但如果考虑高性能计算性能,这种分解可能会造成L1 cache miss率上升。
  • 通过合理平衡网络的宽度和深度优化网络计算消耗(这句话尤其不具有实操性)。
  • 抽样降维,传统抽样方法为pooling+卷积操作,为了防止出现特征表示的瓶颈,往往需要更多的卷积核,例如输入为n个d×d的feature map,共有k个卷积核,pooling时stride=2,为不出现特征表示瓶颈,往往k的取值为2n,通过引入inception module结构,即降低计算复杂度,又不会出现特征表示瓶颈,实现上有如下两种方式:

平滑样本标注

对于多分类的样本标注一般是one-hot的,例如[0,0,0,1],使用类似交叉熵的损失函数会使得模型学习中对ground truth标签分配过于置信的概率,并且由于ground truth标签的logit值与其他标签差距过大导致,出现过拟合,导致降低泛化性。一种解决方法是加正则项,即对样本标签给个概率分布做调节,使得样本标注变成“soft”的,例如[0.1,0.2,0.1,0.6],这种方式在实验中降低了top-1和top-5的错误率0.2%。

网络结构

GoogLeNet Inception V4

GoogLeNet Inception V4/和ResNet V1/V2这三种结构在《Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning》一文中提出,论文的亮点是:提出了效果更好的GoogLeNet Inception v4网络结构;与残差网络融合,提出效果不逊于v4但训练速度更快的结构。

GoogLeNet Inception V4网络结构

GoogLeNet Inception ResNet网络结构

代码实践

Tensorflow的代码在slim模块下有完整的实现,paddlepaddle的可以参考上篇文章中写的inception v1的代码来写。

总结

这篇文章比较偏理论,主要讲了GoogLeNet的inception模块的发展,包括在v2中提出的batch normalization,v3中提出的卷积分级与更通用的网络结构准则,v4中的与残差网络结合等,在实际应用过程中可以可以对同一份数据用不同的网络结构跑一跑,看看结果如何,实际体验一下不同网络结构的loss下降速率,对准确率的提升等。  

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏SIGAI学习与实践平台

视觉多目标跟踪算法综述(上)-附开源代码下载链接整理

目标跟踪是机器视觉中一类被广为研究的重要问题,分为单目标跟踪与多目标跟踪。前者跟踪视频画面中的单个目标,后者则同时跟踪视频画面中的多个目标,得到这些目标的运动轨...

1K2
来自专栏IT派

改变你对世界看法的五大计算机视觉技术!

计算机视觉是当前最热门的研究之一,是一门多学科交叉的研究,涵盖计算机科学(图形学、算法、理论研究等)、数学(信息检索、机器学习)、工程(机器人、NLP等)、生物...

2020
来自专栏CDA数据分析师

一文看懂自动驾驶中应用的机器学习算法

机器学习算法已经被广泛应用于自动驾驶各种解决方案,电控单元中的传感器数据处理大大提高了机器学习的利用率,也有一些潜在的应用,比如利用不同外部和内部的传感器的数据...

31010
来自专栏人工智能头条

实时翻译的发动机:矢量语义(斯坦福大学课程解读)

GraphDB 最近刚刚升级到 8.7 版本,此次特别更新了矢量语义包,直接以插件形式整合到程序中。

782
来自专栏PPV课数据科学社区

【学习】数据挖掘中分类算法小结

数据仓库,数据库或者其它信息库中隐藏着许多可以为商业、科研等活动的决策提供所需要的知识。分类与预测是两种数据分析形式,它们可以用来抽取能够描述重要数据集...

32511
来自专栏专知

【深度学习进阶模型详解】概率图模型/深度生成模型/深度强化学习,复旦邱锡鹏老师《神经网络与深度学习》教程分享05(附pdf下载)

【导读】复旦大学副教授、博士生导师、开源自然语言处理工具FudanNLP的主要开发者邱锡鹏(http://nlp.fudan.edu.cn/xpqiu/)老师撰...

8286
来自专栏数据科学与人工智能

【机器学习】机器学习算法基础知识

在我们了解了需要解决的机器学习问题的类型之后,我们可以开始考虑搜集来的数据的类型以及我们可以尝试的机器学习算法。在这个帖子里,我们会介绍一遍最流行的机器学习算法...

2208
来自专栏目标检测和深度学习

推荐|改变你对世界看法的五大计算机视觉技术!

计算机视觉是当前最热门的研究之一,是一门多学科交叉的研究,涵盖计算机科学(图形学、算法、理论研究等)、数学(信息检索、机器学习)、工程(机器人、NLP等)、生物...

2918
来自专栏机器之心

资源 | 从反向传播到迁移学习,盘点人工智能从业者必备的10个深度学习方法

3387
来自专栏PPV课数据科学社区

常见面试之机器学习算法思想简单梳理

前言:   找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据...

3614

扫码关注云+社区

领取腾讯云代金券