一万元搭建深度学习系统:硬件、软件安装教程,以及性能测试

来源:量子位

作者:Slav Ivanov@blog.slavv.com 编译:问耕

本文长度为4600字,建议阅读6分钟

本文教你万元打造一个深度学习系统。

Macbook这种轻薄的笔记本,是搞不了深度学习的。亚马逊P2云服务,会给堆积越来越多的账单,换个便宜的服务,训练时间又太长……

没办法,已经十多年没用过台式机的我,只能重新着手DIY装机,搭建一套自己的深度学习系统。以下是我的系统搭建和测试过程。

硬件清单

之前,我在AWS亚马逊云服务上的花费是每月70美元(约480元人民币)。按照使用两年计算,我给这套系统的总预算是1700美元(约11650元)。

  • GPU

肯定得买Nvidia,没有其他选择。买两块还是一块?我想了想,还是先买一个性能更好的,以后有钱了再增加。综合显存、带宽等因素,我最终选了GTX 1080 Ti,跟Titan X相比,性能差不了多少,但价格便宜不少。

  • CPU

虽然比不上GPU,但CPU也很重要。从预算出发,我选了一颗中端产品英特尔i5 7500。相对便宜,但不会拖慢整个系统。

  • 内存

两条16GB容量的内存,总共是32GB。

  • 硬盘

两块。

一块SSD硬盘运行操作系统和当前数据,我选的是MyDigitalSSD NVMe 480GB。一块速度较慢的2TB容量HDD硬盘存储大的数据集(例如ImageNet)。

  • 主板

为了以后的拓展,我得选能支持两块GTX 1080 Ti的主板。最后的选择是:华硕TUF Z270。

  • 电源

得为GPU何GPU们提供足够的电力供应。英特尔i5 7500功耗是65W,一块1080Ti需要250W(以后还想加一块),所以最后选择了Deepcool 750W Gold PSU。

  • 机箱

我听从朋友的建议,选了Thermaltake N23机箱。只是没有LED灯,伤心。

组装

组装过程按下不表,装机也是个手艺,最后效果如下图所示。

安装软件

提示:如果你想装Windows系统,最好先安装Windows,再装Linux。要不然Windows会搞乱启动分区。

  • 安装Ubuntu

大部分深度学习框架都工作在Linux环境中,所以我选择安装Ubuntu。一个2GB容量的U盘就能搞定安装,如何制作?

OSX用户参考这里:

https://www.ubuntu.com/download/desktop/create-a-usb-stick-on-macos

Windows用户参考这里:

https://rufus.akeo.ie/

我写这个教程的时候,Ubuntu 17.04版本刚刚发布,但是我选择了之前的16.04版本,因为老版本的相关文档可能更全一点。另外,我选择的是Ubuntu桌面版本,不过关闭了图形界面X,电脑启动会进入终端模式。

如果需要图形界面,只需要输入:startx

  • 及时更新

更新可以使用下面这个命令:

  • 深度学习堆栈

为了展开深度学习,我们需要如下软件来使用GPU:

  • GPU驱动:让操作系统和显卡可以对话
  • CUDA:能让GPU运行通用目的代码
  • CuDNN:CUDA之上的神经网络加速库
  • 深度学习框架:TensorFlow等
  • 安装GPU驱动

最新的驱动,可以参考官网

http://nvidia.com/Download/index.aspx

或者直接使用如下代码安装:

  • 安装CUDA

可以从Nvidia下载CUDA,地址如下:

https://developer.nvidia.com/cuda-downloads

或者直接运行如下的代码:

安装好CUDA之后,下面的代码能把CUDA添加到PATH变量:

现在可以检验一下CUDA装好没有,运行如下代码即可:

删除CUDA或GPU驱动,可以参考如下代码:

  • 安装CuDNN

我用的是CuDNN 5.1,因为最新的TensorFlow不支持CuDNN 6。下载CuDNN,你需要创建一个免费的开发者账号。下载之后,用如下命令安装。

  • Anaconda

Anaconda是一个很棒的Python软件包管理器,我现在使用了Python 3.6版本,所以对应的使用Anaconda 3版本,安装如下:

  • TensorFlow

最流行的深度学习框架,安装:

为了检查一下TensorFlow安装好没有,可以运行MNIST看看:

应该能在训练过程中,看到loss的逐渐减少:

  • Keras

一个高级神经网络框架,安装非常简单:

  • PyTorch

深度学习框架届的新兵,但也值得推荐,安装命令:

  • Jupyter notebook

Jupyter是一个交互式的笔记本,随着Anaconda安装,我们要配置和测试一下:

现在打开http://localhost:8888,应该就能看到Jupyter的界面。

我们可以把Jupyter设置成自动启动,使用crontab来设置。运行crontab -e,然后把如下代码添加在最后。

测试

现在基本上准备妥当了,是时候测试一下了。参加此次对比的几个选手是:

  • AWS P2实例GPU(K80)
  • AWS P2虚拟CPU
  • 英伟达GTX 1080 Ti
  • 英特尔i5 7500
  • MNIST多层感知器

MNIST数据集由70000手写数字组成。我们在这个数据集上运行了一个使用多层感知器(MLP)的Keras案例,代码地址:

https://github.com/fchollet/keras/blob/master/examples/mnist_mlp.py

MLP的意思是只使用全连接的层,而不用卷积。这个模型在这个数据集上进行了20次训练,实现了超过98%的准确率。

可以看到在训练这个模型时,GTX 1080 Ti比AWS P2 K80快2.4倍,这有点惊人,因为两个显卡的性能应该差不多,我觉得可能是AWS上有降频或者受到虚拟化的影响。

CPU的表现比GPU慢9倍。有趣的是,i5 7500比亚马逊的虚拟CPU快2.3倍。

  • VGG微调

为Kaggle猫狗识别竞赛而微调一个VGG网络。使用相同的batch在CPU上运行这个模型不可行,所以我们在GPU上微调了390个batch,在CPU上是10个batch。代码如下:

https://github.com/slavivanov/cats_dogs_kaggle

这次1080 Ti比AWS P2 K80快5.5倍。CPU在这个环节的表现,最多慢了200倍。

  • Wasserstein GAN

生成对抗网络(GAN)用来训练模型产生图像。Wasserstein GAN是原始GAN的一个改进版。我这里用了一个PyTorch实现,代码地址:

https://github.com/martinarjovsky/WassersteinGAN

这个模型需要50步训练,CPU在这个训练中不予考虑。

GTX 1080 Ti比AWS P2 K80快5.5倍。

  • 风格迁移

最后一个测试是在TensorFlow上的风格迁移实现,代码地址:

https://github.com/slavivanov/Style-Tranfer

GTX 1080 Ti比AWS P2 K80快4.3倍。CPU比GPU慢30-50倍。

好啦,关于万元打造一个深度学习系统的分享,就先到这里。

原文发布于微信公众号 - 数据派THU(DatapiTHU)

原文发表时间:2017-06-03

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏智能算法

数据异常到底该如何检测?(一)

小编在正式进入工作之后,面对的第一个需要去解决的问题:在网络安全监测中,如何发现异常数据?如异常用户登录,异常操作等。对于网络上的问题我确实是第一次接触这样类型...

7517
来自专栏慎独

Python科学计算和绘图入门

4404
来自专栏新智元

Kaggle放大招:简单几步实现海量数据分析及可视化

【新智元导读】近期,Kaggle发布了新的数据分析及可视化工具——Kaggle Kerneler bot,用户只需上传数据集,便可用Python为用户自动获取相...

1363
来自专栏AI科技评论

开发 | 谷歌发布TensorFlow 1.4版本:支持分布式训练,迎来三大新变化

e Developers blog正式撰文发布TensorFlow 1.4版本,此次的更新迎来三个重大变化:Keras位于TensorFlow core中,Da...

3053
来自专栏新智元

【解放程序员】MIT“创世纪”机器学习新系统,自动生成补丁修复Bug

【新智元导读】当您辛辛苦苦写了大半年程序,终于要享受一下国庆长假的时候,别让 bug 把您的假期毁了。MIT 研究团队开发了一个称为“创世纪”的系统,能够对以前...

3725
来自专栏大数据挖掘DT机器学习

支持中文文本数据挖掘的开源项目PyMining

最近一个月,过年的时候天天在家里呆着,年后公司的事情也不断,有一段时间没有更新博客了。PyMining是我最近一段时间构思的一个项目,虽然目前看来比较微型。该项...

4266
来自专栏WOLFRAM

Mathematica 11 在化学中的应用

1376
来自专栏安全领域

在物联网中应用机器学习:使用 Android Things 与 TensorFlow

在本教程中,我们将探索如何使用 Android Things 和 TensorFlow 将机器学习应用到物联网中。

93316
来自专栏AI科技大本营的专栏

详解CPU漏洞对机器学习的影响:几乎所有卷积层都受影响,QR分解降速37%

作者 | Mikel Bober-Irizar 翻译 | 刘畅 编辑 | Donna (备注:KPTI 在计算机中指 Kernel page-table iso...

2948
来自专栏WOLFRAM

Mathematica 11.1.1 中文版已发布

1473

扫码关注云+社区

领取腾讯云代金券