马库斯再谈AlphaGo Zero不是从零开始,AGI可能需要这十大先天机制

安妮 编译整理

纽约大学心理学和神经科学教授马库斯(Gary Marcus)坚信AlphaZero仍依赖于一些人类知识,也曾在AlphaZero解读现场这样diss哈萨比斯

可能觉得说得不够,近日,马库斯在arXiv发布了本月第二篇长文Innateness, AlphaZero, and Artificial Intelligence,继续论证AlphaZero“可以在没有人类指导的情况下训练到超过人类水平”的说法被夸大了。

“当代人工智能论文(通常)用了一个‘相当不错的’具体结果,对更广泛的主题做出了绝对普遍和离谱的断言。”几个小时前,他在推特引用了这句话,说明自己怒怼的原因。

在文章中,马库斯将AlphaGo、AlphaGo Zero、AlphaZero的归结成一种“神奇的AI工程”,代号“AlphaStar”。

它是一种深层结构的混合,它不单利用深度学习人,也依赖于像树搜索这样的传统符号技巧(symbolic technique)。

这到底是种怎样的神奇工程?马库斯从DeepMind如何构建Alpha家族的架构开始讲起,量子位将重点内容编译整理如下。

马库斯

从零开始?

DeepMind在论文中说“一种纯强化学习方法是可行的,即使在最具挑战性的领域,它也能训练到超过人类的水平,并且无需人类的案例和指导。除了基本规则外,没有任何领域的基础知识。”

我不赞同。

他们系统中的很多方面延续了在之前在围棋程序上积累的研究,比如构建游戏程序中常用的蒙特卡洛树搜索。这种技术可以用来评估动作和对策,在树状结构上快速得到测试结果。

问题来了,蒙特卡洛树这种结构不是通过强化学习从数据中学习的。相反,它在DeepMind的程序中是与生俱来的,根深蒂固地存在于每个迭代的AlphaStar。

可以发现,DeepMind给出的卷积结构很精确,有很多下围棋的精确参数在里面,这不是通过纯碎的强化学习学到的。并且,固有算法和知识的整合的取样机制不在AlphaZero的实验范围内,这样可能会导致模型效果变差。

与其说AlphaGo是从白板开始学习,不如说是它在构建的开始就站在了巨人的肩膀上。

完美信息博弈之外

无论是围棋、国际象棋还是将棋,都属于完美信息博弈。在这些游戏中,每个玩家可以在任何时候看到已经发生或正在发生的游戏局势。正因如此,围棋、国际象棋和将棋问题特别适合用大数据的方法“蛮力破解”。

问题来了,同样的机制能解决更广泛的问题吗?

AlphaGo Zero的解释中并没有说明应用范围,结果是否在其他挑战中通用也没有被提及。事实是,即使在其他棋类游戏中,这套方法可能并不适用。

围棋程序需要的是强模式识别和树搜索技能,但其他游戏需要的能力可能不是这些。文明系列的游戏需要在不确定的交通网络中做出决策,游戏强权外交需要形成联盟,字谜游戏需要语言技能等等。

还有一个例子,Moravcik等人研究的AI DeepStack能在德扑中击败人类对手,就需要一套相关但不同的先天结构,这无疑和完美信息的单机Atari游戏需要的结构不同。DeepMind想同时攻克这两种游戏,那他需要的是一套广泛的先天机制,而不是仅适用于单一游戏的系统。

如何让这套先天机制适用于完美信息博弈以外的游戏呢?我们接着往下看。

先天机制(Innate machinery)

仅仅有强化学习和蒙特卡洛树搜索这两种先天机制还不够,那么,如果要达到通用人工智能,我们需要怎样的结构呢?

在去年10月5号和LeCun的论证中,我有机会总结出一套计算原语组合:

  • 物体的表示
  • 架构化和代数表示
  • 基于变量的操作
  • type-token区别
  • 表示集合、位置、路径、轨迹、障碍和持久性的能力
  • 表示物体的可视性的方法
  • 时空邻近(Spatiotemporal contiguity)
  • 因果关系
  • 平移不变性
  • 分析成本效益的能力

具备了上述的基础列表中的原语,可能自然就能拥有其他技能了。比如基于博弈的树搜索可能是AlphaStar与生俱来的,但是人们可能学习如何做出分析,即使精确度差了些,但至少可以把时间、因果关系和意图性结合在一起,具备成本效益分析的能力。

但上面列表仅仅是个初版,它应该有多长还是个未知数。这让我想起1994年Pinker提出的一组的先天能力,里面甚至包括了恐惧、自我概念和性吸引力。这些都有些经验主义,但每个特征都被认知和发展心理学、动物行为学和神经科学所支撑。

更重要的是,就目前的目的而言,这个领域确实存在一些可能的先天机制值得AI研究者去思考,简单假设在默认情况下,包含很少或几乎不包含先天机制就让人满意了,往好了说这叫保守。往坏了说,不经过思考就承诺从头开始重新学习可能也非常愚蠢,这是将每个独立的AI系统置于需要重新概括数百万年来进化的初始位置。

最后,附论文链接: https://arxiv.org/abs/1801.05667

原文发布于微信公众号 - 量子位(QbitAI)

原文发表时间:2018-01-20

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技评论

视频 | 憋不出论文怎么办?不如试试这几种办法

AI 科技评论按:这里是,油管 Artificial Intelligence Education 专栏,原作者 Siraj Raval 授权雷锋字幕组编译。 ...

35570
来自专栏PaddlePaddle

资讯|本届AI开发者大会PaddlePaddle亮点回顾

中国开发者们的年度盛会——百度AI开发者大会近日落下帷幕。本次大会中,深度学习框架PaddlePaddle也备受关注,分论坛深度学习公开课现场气氛活跃。小PP梳...

12730
来自专栏ATYUN订阅号

MIT设计高机动性的自动驾驶船,旨在减轻水路众多的城市交通负担

阿姆斯特丹,曼谷和威尼斯等富含水路的城市,交通运输未来可能会是自动驾驶船,用它来运送货物和人员,帮助清理道路拥堵。

15740
来自专栏腾讯数据中心

腾讯数据中心基础设备质量检测之电流传感器、智能电表篇

背景 2015年8月9日,我们发表了腾讯数据中心基础设备质量检测之温湿度传感器篇,详细阐述了腾讯数据中心近年来严把基础设备质量的前因后果。据后台结果显示,此文送...

31430
来自专栏量子位

淘宝用强化学习优化商品搜索后,总收入能提高2% | 论文

23030
来自专栏新智元

AI 战略剑指GPU,英特尔Nervana 平台将推首款深度学习芯片

【新智元导读】2016年11月17日,英特尔终于对外公布了自己的人工智能战略布局:英特尔® Nervana™ 平台成为重点,此外,英特尔还会在明年推出首款深度学...

39060
来自专栏企鹅号快讯

机器学习人工学weekly-12/24/2017

1. DeepMind发布2017年的回顾blog,总结今年在多个方面取得的进展,比如AlphaGo Zero,Parallel WaveNet(比最早的Wav...

20650
来自专栏ATYUN订阅号

Flir与英特尔为开发AI系统建立了一个开放式相机平台Flir Firefly

总部位于俄勒冈州威尔逊维尔的Flir公司是世界上最大的红外热像仪和传感器生产商之一,与英特尔合作创建了一个开放式相机平台Flir Firefly,专为AI系统开...

20230
来自专栏机器人网

混合型机器人---直角坐标机器人与关节机器人的有机结合

直角坐标机器人被广泛应用于各种自动化生产线中完成码垛搬运、上下料、供料、装配、检测、焊接和涂胶等任务。它以行程大,负载能力强,精度高,组合方便,性价比非常高,易...

11530
来自专栏IT大咖说

Kubeflow用户研究:Data Scientist是一群什么生物?

内容来源:2018 年 04 月 22 日,Pinlan创始人兼CEO李一帆在“全球首发| Kubeflow Meetup 4.22 杭州场,开拓 AI 新视野...

16120

扫码关注云+社区

领取腾讯云代金券