22本数据分析、挖掘的好书推荐—绝对干货,不看后悔!

1. 深入浅出数据分析

这书挺简单的,基本的内容都涉及了,说得也比较清楚,最后谈到了R是大加分。

难易程度:非常易。

2.啤酒与尿布

通过案例来说事情,而且是最经典的例子。

难易程度:非常易。

3.数据之美

一本介绍性的书籍,每章都解决一个具体的问题,甚至还有代码,对理解数据分析的应用领域和做法非常有帮助。

难易程度:易。

4.集体智慧编程

学习数据分析、数据挖掘、机器学习人员应该仔细阅读的第一本书。作者通过实际例子介绍了机器学习和数据挖掘中的算法,浅显易懂,还有可执行的Python代码。

难易程度:中。

5.Machine Learning in Action

用人话把复杂难懂的机器学习算法解释清楚了,其中有零星的数学公式,但是是以解释清楚为目的的。而且有Python代码,大赞!目前中科院的王斌老师(微博: @王斌_ICTIR)已经翻译这本书了 机器学习实战 (豆瓣)。这本书本身质量就很高,王老师的翻译质量也很高。

难易程度:中。

6.推荐系统实践

这本书不用说了,研究推荐系统必须要读的书,而且是第一本要读的书。

难易程度:中上。

7.数据挖掘导论

最近几年数据挖掘教材中比较好的一本书,被美国诸多大学的数据挖掘课作为教材,没有推荐Jiawei Han老师的那本书,因为个人觉得那本书对于初学者来说不太容易读懂。

难易程度:中上。

8.The Elements of Statistical Learning

这本书有对应的中文版:统计学习基础 (豆瓣)。书中配有R包,非常赞!可以参照着代码学习算法。

难易程度:难。

9.统计学习方法

李航老师的扛鼎之作,强烈推荐。

难易程度:难。

10.Pattern Recognition And Machine Learning

经典中的经典。

11.Machine Learning

去年出版的新书,作者Kevin Murrphy教授是机器学习领域中年少有为的代表。这书是他的集大成之作,写完之后,就去Google了,产学研结合,没有比这个更好的了。

12.Bayesian Reasoning and Machine Learning

看名字就知道了,彻彻底底的Bayesian学派的书,里面的内容非常多,有一张图将机器学习中设计算法的关系总结了一下,很棒。

13.Machine Learning for Hackers

也是通过实例讲解机器学习算法,用R实现的,可以一边学习机器学习一边学习R。

14.Probabilistic Graphical Models

鸿篇巨制,这书谁要是读完了告诉我一声。

15.Convex Optimization

凸优化中最好的教材,没有之一了。课程也非常棒,Stephen老师拿着纸一步一步推到,图一点一点画,太棒了。

16.Graphical Models, Exponential Families, and Variational Inference

这个是Jordan老爷子和他的得意门徒 Martin J Wainwright 在 Foundation of Machine Learning Research上的创刊号,可以免费下载,比较难懂,但是一旦读通了,graphical model的相关内容就可以踏平了。

17.Introduction to Semi-Supervised Learning

半监督学习必读必看的书。

18.Learning to Rank for Information Retrieval

微软亚院刘铁岩老师关于LTR的著作,啥都不说了,推荐!

19.Learning to Rank for Information Retrieval and Natural Language Processing

李航老师关于LTR的书,也是当时他在微软亚院时候的书,可见微软亚院对LTR的研究之深,贡献之大。

20.SciPy and NumPy

这本书可以归类为数据分析书吧,因为numpy和scipy真的是非常强大啊。

21.Python for Data Analysis

作者是Pandas这个包的作者,看过他在Scipy会议上的演讲,实例非常强,用pandas做数据分析!

22.Bad Data Handbook

很好玩的书,作者的角度很不同。

原文发布于微信公众号 - CDA数据分析师(cdacdacda)

原文发表时间:2014-12-16

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏企鹅号快讯

以科学的方式赤裸裸地剖析AI

(作者:洪小文,现任微软全球资深副总裁,微软亚太研发集团主席兼微软亚洲研究院院长,全面负责推动微软在亚太地区的科研及产品开发战略,以及与中国及亚太地区学术界的合...

1919
来自专栏大数据挖掘DT机器学习

写给数据分析的初学者

在QQ群里听到一些网友在讨论数据分析的话题。有人正为自己学会了spss而高兴,有人说自己还略懂sas,还有人提到了sql查询语言。大家都在积极地学习,希望能在数...

3535
来自专栏专知

【获奖】自动化所杨小汕博士、徐常胜研究员分获2017年度“中国科学院优秀博士学位论文”、“优秀导师奖”

中国科学院自动化研究所模式识别实验室多媒体计算团队——杨小汕博士获得“中国科学院优秀博士学位论文”。2017年,中科院共有100篇博士论文入选“优秀博士学位论文...

3466
来自专栏量子位

ImageNet这八年:李飞飞和被她改变的AI世界

李杉 安妮 编译自 QZ 量子位 报道 | 公众号 QbitAI ? 2006年,李飞飞开始考虑一个想法。 当时刚刚出任伊利诺伊大学香槟分校计算机教授的她发现,...

4856
来自专栏新智元

【荐书】机器学习需要的数学知识和基础书籍推荐

【新智元导读】我们在《机器学习里,数学究竟多重要?》一文中提供了机器学习所需的数学知识和建议,对于初学者来说,并不需要先掌握大量的数学知识再开始做机器学习。学习...

40212
来自专栏量子位

开学三周了快补课:伯克利CS 294深度强化学习课,有视频有课件

8月22日到现在,从行为的监督学习,讲到了策略梯度和演员-评论家,前六节课的视频已经放出来了。

2552
来自专栏新智元

NIPS2018大会门票遭疯抢!11分钟秒光,刷个牙就没了

昨天,神经信息处理系统大会(Neural Information Processing Systems,NIPS)开放注册,会议门票在短短11分钟内就售罄;半小...

2432
来自专栏AI科技大本营的专栏

洪小文:以科学的方式赤裸裸地剖析AI(二)|从寒冬到复兴

近两年来,人工智能掀起的全民热潮可谓前所未有,几乎每行每业都在积极向机器学习、大数据、深度神经网络等这些“网红”技术靠拢。然而,在人工智能遍地生花的今天,更加令...

3806
来自专栏新智元

薛定谔的滚与深度学习中的物理

【新智元导读】作者从薛定谔的“滚”讲到世界的量子性、神经网络的最大似然等等,用颇具趣味的方式呈现了深度学习中无处不在的物理本质。 最近朋友圈里有大神分享薛定谔的...

3445
来自专栏ATYUN订阅号

通过AI检测和分离古老雕刻中的字母

在Arxiv上发表的一篇论文“Open Source Dataset and Machine Learning Techniques for Automatic...

812

扫码关注云+社区

领取腾讯云代金券