前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【知识】正则化与过拟合

【知识】正则化与过拟合

作者头像
陆勤_数据人网
发布2018-02-26 10:24:26
5920
发布2018-02-26 10:24:26
举报
文章被收录于专栏:数据科学与人工智能

小编邀请您,先思考:

  • 过拟合怎么理解?如何解决?
  • 正则化怎么理解?如何使用?

在机器学习中有时候会出现过拟合,为了解决过拟合问题,通常有两种办法,第一是减少样本的特征(即维度),第二就是我们这里要说的“正则化”(又称为“惩罚”,penalty)。

从多项式变换和线性回归说起

在非线性变换小节中,我们有讨论Q次多项式变换的定义和其包含关系,这里如果是10次多项式变换,那么系数的个数是11个,而2次多项式的系数个数是3。从中我们可以看出,所有的2次多项式其实是10次多项式加上一些限制,即w3=w4=...=w10=0。

基于上面的讨论,我们希望能将二次多项式表示成十次多项式再加上一些约束条件,这一步的目的是希望能拓宽一下视野,在推导后面的问题的时候能容易一些。

这个过程,我们首先要将二次多项式的系数w拓展到11维空间,加上w3=w4=...=w10=0这个条件得到假设集合H2;然后为了进一步化简,我们可以将这个条件设置的宽松一点,即任意的8个wi为0,只要其中有三个系数不为0就行,得到一组新的假设空间H2',但这个问题的求解是一个NP-hard的问题,还需要我们修正一下;最后,我们还需要将这个约束条件进一步修正一下得到假设集合H(C),给系数的平方的加和指定一个上限,这个假设集合H(C)和H2'是有重合部分的,但不相等。 最后,我们把H(C)所代表的假设集合称为正则化的假设集合。 下图表示了这个约束条件的变化:

正则化的回归问题的矩阵形式

由上图所示,我们现在要求解的是在一定约束条件下求解最佳化问题,求解这个问题可以用下面的图形来描述。

本来要求解Ein的梯度,相当于在一个椭圆蓝色圈中求解梯度为零的点,而下面这个图表示,系数w在半径是根号C的红色球里面(w需要满足的约束条件),求解蓝色区域使得梯度最小的点。

那么,最优解发生在梯度的反方向和w的法向量是平行的,即梯度在限制条件下不能再减小。我们可以用拉格朗日乘数的方法来求解这个w。

Ridge Regression

Ridge Regression是利用线性回归的矩阵形式来求解方程,得到最佳解。

Augmented Error

我们要求解这个梯度加上w等于0的问题,等同于求解最小的Augmented Error,其中wTw这项被称为regularizer(正则项)。我们通过求解Augmented Error,Eaug(w)来得到回归的系数Wreg。这其实就是说,如果没有正则项的时候(λ=0),我们是求解最小的Ein问题,而现在有了一个正则项(λ>0),那么就是求解最小的Eaug的问题了。

不同的λ造成的结果

从上图可以看出,当λ=0的时候就会发生过拟合的问题,当λ很小时(λ=0.0001),结果很接近理想的情况,如果λ很大(λ=1),会发生欠拟合的现象。所以加一点正则化(λ很小)就可以做到效果很好。

正则化和VC理论

我们要解一个受限的训练误差Ein的问题,我们将这个问题简化成Augmented Error的问题来求解最小的Eaug。

原始的问题对应的是VC的保证是Eout要比Ein加上复杂度的惩罚项(penalty of complexity)要小。而求解Eaug是间接地做到VC Bound,并没有真正的限制在H(C)中。

wTw可以看成是一个假设的复杂度,而VC Bound的Ω(H)代表的是整个假设集合有多么的复杂(或者说有多少种选择)。

这两个问题都好像是计算一个问题的复杂度,我们该怎么联系着两种复杂度的表示方式呢?其理解是,一个单独的很复杂的多项式可以看做在一类很复杂的假设集合中,所以Eaug可以看做是Eout的一个代理人(proxy),这其实是我们运用一个比原来的Ein更好一点点代理人Eaug来贴近好的Eout。

一般性的正则项

L1 Regularizer

L1 Regularizer是用w的一范数来算,该形式是凸函数,但不是处处可微分的,所以它的最佳化问题会相对难解一些。

L1 Regularizer的最佳解常常出现在顶点上(顶点上的w只有很少的元素是非零的,所以也被称为稀疏解sparse solution),这样在计算过程中会比较快。

L2 Regularizer

L2 Regularizer是凸函数,平滑可微分,所以其最佳化问题是好求解的。

最优的λ

噪声越多,λ应该越大。由于噪声是未知的,所以做选择很重要,我将在下一小节中继续接受有关参数λ选择的问题。

总结

过拟合表现在训练数据上的误差非常小,而在测试数据上误差反而增大。其原因一般是模型过于复杂,过分得去拟合数据的噪声和异常点。正则化则是对模型参数添加先验,使得模型复杂度较小,对于噪声以及outliers的输入扰动相对较小。

正则化符合奥卡姆剃刀原理,在所有可能选择的模型,能够很好的解释已知数据并且十分简单才是最好的模型,也就是应该选择的模型。从贝叶斯估计的角度看,正则化项对应于模型的先验概率,可以假设复杂的模型有较小的先验概率,简单的模型有较大的先验概率。

参考资料

机器学习中的范数规则化之(一)L0、L1与L2范数

http://blog.csdn.net/zouxy09/article/details/24971995

机器学习中的范数规则化之(二)核范数与规则项参数选择

http://blog.csdn.net/zouxy09/article/details/24972869

作者Jason Ding

http://blog.csdn.net/jasonding1354/article/details/44006935#comments

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-02-22,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 数据科学与人工智能 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 从多项式变换和线性回归说起
    • 正则化的回归问题的矩阵形式
      • Ridge Regression
        • Augmented Error
          • 不同的λ造成的结果
          • 正则化和VC理论
          • 一般性的正则项
            • L1 Regularizer
              • L2 Regularizer
                • 最优的λ
                • 总结
                • 参考资料
                领券
                问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档