【深度学习】深度学习入门资源索引

深度学习(Deep Learning)属于非常前沿的学科,没有现成的的综合型教材,主要是通过阅读大量论文和代码练习来学习。值得读的经典论文很多,下面介绍的一些教程中多少都有提及,另外就是去google重要文献。代码方面推荐使用python为基础的theano框架,因为它比较偏底层,可以从细节掌握如何构建一个深度学习模块,而且方便结合python在数据领域的其它积累,例如numpy。当然到了生产环境你可以再考虑torch之类的框架。从代码角度切入学习的好处是,理解起来不会像理论切入那么枯燥,可以很快做起一个好玩的东西。当然,最后你还是得补充理论的。下面精选介绍一些本人在学习时遇到的好教程。 1、入门首选: http://deeplearning.net/tutorial/ 该站提供了一系列的theano代码示范,通过研究模仿,就可以学会包括NN/DBN/CNN/RNN在内的大部分主流技术。其中也有很多文献连接以供参考。 2、BP神经网络: http://neuralnetworksanddeeplearning.com/ 第1部分的教程中,神经网格的参数是theano自动求导的,如果想深入了解细节,还得手动推导加代码实现一遍。该教程对BP神经网络的理论细节讲的非常好。 3、理论补充: http://goodfeli.github.io/dlbook/ 该书内容比较广泛,虽未最终完成,但已初见气象。用来完善理论知识是再好不过。 4、图像处理中的卷积神经网络: http://vision.stanford.edu/teaching/cs231n/syllabus.html 前面三部分相当于导论,比较宽泛一些,该教程则是专注于卷积神经网络在图像视觉领域的运用,CNN方面知识由此深入。 5、自然语言处理中的深度学习: http://cs224d.stanford.edu/ 本教程则偏重于深度学习在自然语言处理领域的运用,词向量等方面知识由此深入。 6、递归神经网络: http://www.wildml.com/ 该博客讲的RNN是非常棒的系列,不可不读。 7、keras框架: http://keras.io/ keras框架是基于theano的上层框架,容易快速出原型,网站中提供的大量实例也是非常难得的研究资料。 8、深度学习和NLP https://github.com/nreimers/deeplearning4nlp-tutorial/tree/master/2015-10_Lecture 该教程是第5部分的补充,理论讲的不多,theano和keras代码讲的很多,附带的代码笔记很有参考价值。 9、机器学习教程 https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/ 牛津大学的机器学习课程,讲到了大量深度学习和强化学习的内容,适合于复习过一遍。 10、搭建硬件平台 http://xccds1977.blogspot.com/2015/10/blog-post.html 到这里,你的理论和代码功力应该差不多入门了,可以组个GPU机器来大干一场了。可以参考笔者这个博客来攒个机器。 11、去kaggle实战玩玩吧 http://www.kaggle.com/

来源:深度学习实验室

原文发布于微信公众号 - 数据科学与人工智能(DS_AI_shujuren)

原文发表时间:2015-12-25

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏IT派

如何在机器学习竞赛中更胜一筹?

机器学习很复杂。你可能会遇到一个令你无从下手的数据集,特别是当你处于机器学习的初期。 在这篇文章中,你将学到一些基本的关于建立机器学习模型的技巧,大多数人都从中...

35570
来自专栏机器之心

学界 | 如何帮助大家找工作?领英利用深度表征学习提升人才搜索和推荐系统

领英征才解决方案(LinkedIn Talent Solutions,LTS)业务为领英贡献了大约 65% 的年收入,该业务方便职位提供者接触潜在应聘者,也方便...

12630
来自专栏大数据

数据科学如何最大化社交网络影响力?(上)

社交网络早已是我们生活中不可缺少的一部分,更是网络时代营销活动的重点投放渠道;如何使社交网络的影响力最大化,也成了数据科学关注的重点。本期,我们介绍线性阈值模型...

29580
来自专栏AI科技评论

面对未知分类的图像,我要如何拯救我的分类器

AI 科技评论按:当训练好的图像分类器遇到了训练数据里不存在的类别的图像时,显然它会给出离谱的预测。那么我们应该如何改进分类器、如何克服这个问题呢?

24640
来自专栏CreateAMind

技术架构分析:攻克Dota2的OpenAI-Five

16910
来自专栏机器之心

教程 | 深度Q学习:一步步实现能玩《毁灭战士》的智能体

选自Medium 作者:Thomas Simonini 机器之心编译 参与:Panda 近年来,深度强化学习已经取得了有目共睹的成功。机器之心也曾发布过很多介绍...

29750
来自专栏杨熹的专栏

一文了解强化学习

虽然是周末,也保持充电,今天来看看强化学习,不过不是要用它来玩游戏,而是觉得它在制造业,库存,电商,广告,推荐,金融,医疗等与我们生活息息相关的领域也有很好的应...

36660
来自专栏AI科技评论

学界 | François Chollet谈深度学习的局限性和未来(下)

AI 科技评论按:本篇是 Keras 作者 François Chollet 撰写的一篇博客,文中作者结合自己丰富的开发经验分享一些自己对深度学习未来发展方向的...

9620
来自专栏james大数据架构

你必须要了解的大数据潮流下的机器学习及应用场景

  机器学习是一门人工智能的科学,能通过经验自动改进的计算机算法的研究。       机器学习是一个多学科交叉的领域,会涉及到计算机、信息学、数学、统计学、神经...

45080
来自专栏人工智能头条

人工智能进行连续决策的关键——强化学习入门指南

17120

扫码关注云+社区

领取腾讯云代金券