【深度学习】自动驾驶汽车:实现实时交通信号灯检测和分类

今天,基本的交通灯信号灯检测问题已经得到解决。深度学习和计算机视觉的创新以强健的算法的形式存在。它们在没有开发代码的情况下工作,手动确定颜色或交通信号灯的位置。例如,优化的R-CNN(https://arxiv.org/abs/1506.01497)模型能够以实时的速度获得最先进的精度。那么它是如何工作的呢?

交通信号灯在哪里?

Google的一个团队使用提取检测到的交通信号灯的方法,然后在该方法上运行第二个分类器。提供了灵活性;然而,根据实现的不同,它可能会增加管道复杂度和计算成本。更重要的是,它似乎依赖于对预期交通信号灯位置的先验信息。一般来说,将分类作为第二步添加第二个网络进行培训、测试等等。

检测交通信号灯的方法https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37259.pdf

在只有一个图像,没有先验信息的情况下,是否可以在一个神经网络中完成任务?

我开始先使用了单镜头检测(SSD),最后使用了Faster R-CNN,因为它对较小的对象具有较好的性能。我有点费力地重建了现有的实现,以自学它是如何工作的。然后切换到使用开放源码的tensorflow对象检测api。

最近发布的工具集(https://github.com/tensorflow/models)为测试模型提供了更快的周转时间,并准备好了预先训练的权重。它允许我更多地关注工程的实现,并且很少涉及每个神经网络实现的细节。

在该论文(https://arxiv.org/abs/1611.10012)中,他们讨论了不同方法的性能权衡。例如,SSD(类似于YOLO)对于中型到大型对象来说很好,但是对于小型对象来说,它比Faster R-CNN更糟糕。在实践中我们很难让SSD在Bosch的小交通信号灯数据集(https://hci.iwr.uni-heidelberg.de/node/6132)上收敛。相反,包含Resnet的Faster R-CNN能得到良好的结果。

想看到更多吗?查看完整的视频:测试视频(https://youtu.be/5e_9r9DROEY)或训练视频(https://youtu.be/EN2jZ-9LRjs)。

为Udacity自动驾驶汽车调整Bosch数据

我们一直在做一个关于自动驾驶汽车的有限测试。在一个很小的封闭轨道上,汽车必须成功地遵循一组路标并识别交通信号灯。

如果你对技术细节感兴趣,可以查看代码https://github.com/nhiddink/SDCND_Capstone_TEC

双转移学习

由于可用的数据量有限,我们严重依赖转移学习。我们可以使用以下数据集:

  • COCO(http://cocodataset.org/#home)预先训练网络
  • Bosch交通信号灯数据
  • Udacity真实数据(150个样本)或sim数据(260个样本)

我们得到了很好的结果。

为什么要使用深度学习的方法?

交通信号灯有不同的数量、位置、形状、大小和布局。基于深度学习的方法,这些差异通过深度学习是“容易的”解决的——只收集在汽车行驶区域的交通信号灯类型的例子。

高精度定位的动机

高精度的边界框允许高精度距离估计。距离估计的越准确,我们就越接近其他数据点。看下图,交通信号灯在十字路口附近还是远侧呢?

实时性能(10 + Hz)

起初,我们需要大约220 ms的推理时间,与滑动窗口的方法相比较,这是一个更快速的方法,我个人认为3 – 4帧每秒不是实时的。

根据论文的建议,我们将该区域建议数量从原来的300个减少到50个。在推理时间里(~220 ms 到~80 ms),给了我们一个具有类似精度的~3x的速度。预测在1280×720图像中不到1%的交通信号灯。例如,在上述谷歌的论文中,他们使用了2040×1080或2.3x像素的图像。

失败案例

有许多系统还没有准备好用于生产的示例。举个例子,在下面的图片中的灯光被认为是黄色的。

在拥有更多数据或者更多培训的情况下,很多这样的案例可以被解决。例如,我们训练了大约2万次迭代,这大概是真正收敛(最优模型的权重值)需要的1 / 10。

最后一步

在测试过程中,我意外地在真实图像上运行了模拟图像的网络。

某种程度上来说,它可以工作,而且运行得很好。看看下面这个例子的结果:

  • 第一张:Bosch训练(不同风格的图像)=没有超过50%confidence的预测
  • 第二张:Sim训练(上面的图片)=正确预测
  • 第三张:真实的数据训练(bosch数据之后)=错误预测

这是一件有趣的事情。从理论上讲,你可以模拟任何你想要的情况,把它提供给一个深度学习系统,然后将其通用化到现实生活中的情况。

深度学习代码:https://github.com/swirlingsand/deeper-traffic-lights 自动驾驶汽车代码:https://github.com/nhiddink/SDCND_Capstone_TEC 测试视频:https://youtu.be/5e_9r9DROEY 训练视频:https://youtu.be/EN2jZ-9LRjs

原文发布于微信公众号 - ATYUN订阅号(atyun_com)

原文发表时间:2017-10-04

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏葡萄城控件技术团队

Table-values parameter(TVP)系列之二: 利用DataTable将其作为参数传给SP

一,回顾         上一部分讲述了“在T-SQL中创建和使用TVP”,通过T-SQL建立如下的对象:         1)Tables ...

2039
来自专栏跟着阿笨一起玩NET

winform treeView 数据绑定

922
来自专栏谈补锅

记录C#常用的代码片段

using Newtonsoft.Json; using Newtonsoft.Json.Linq;

882
来自专栏积累沉淀

Hive2.0.0操作HBase 1.2.1报错解决

首先看错  org.apache.hive.service.cli.HiveSQLException: Failed to open new session: ...

2319
来自专栏c#开发者

jquery easyui datagrid mvc server端分页排序筛选的实现

1自定义一个ModelBinder public class filterRule { public string field { g...

4169
来自专栏码匠的流水账

聊聊EurekaRibbonClientConfiguration

spring-cloud-netflix-eureka-client-2.0.0.RELEASE-sources.jar!/org/springframewor...

1121
来自专栏玩转JavaEE

RestTemplate的逆袭之路,从发送请求到负载均衡

上篇文章我们详细的介绍了RestTemplate发送请求的问题,熟悉Spring的小伙伴可能会发现:RestTemplate不就是Spring提供的一个发送请求...

1.1K4
来自专栏菩提树下的杨过

MSDN官方的ASP.Net异步页面的经典示例代码

示例1.演示异步获取一个网址的内容,处理后显示在OutPut这一Label上 using System; using System.Web; using S...

1955
来自专栏菩提树下的杨过

SqlTransaction事务使用示例

using System; using System.Data; using System.Data.SqlClient; using System.Co...

1828
来自专栏c#开发者

C# : row-clickable GridView and get and set gridview rows using JavaScript

Complete C# code: ---------------- using System; using System.ComponentModel; ...

2966

扫码关注云+社区