【深度学习】自动驾驶汽车:实现实时交通信号灯检测和分类

今天,基本的交通灯信号灯检测问题已经得到解决。深度学习和计算机视觉的创新以强健的算法的形式存在。它们在没有开发代码的情况下工作,手动确定颜色或交通信号灯的位置。例如,优化的R-CNN(https://arxiv.org/abs/1506.01497)模型能够以实时的速度获得最先进的精度。那么它是如何工作的呢?

交通信号灯在哪里?

Google的一个团队使用提取检测到的交通信号灯的方法,然后在该方法上运行第二个分类器。提供了灵活性;然而,根据实现的不同,它可能会增加管道复杂度和计算成本。更重要的是,它似乎依赖于对预期交通信号灯位置的先验信息。一般来说,将分类作为第二步添加第二个网络进行培训、测试等等。

检测交通信号灯的方法https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37259.pdf

在只有一个图像,没有先验信息的情况下,是否可以在一个神经网络中完成任务?

我开始先使用了单镜头检测(SSD),最后使用了Faster R-CNN,因为它对较小的对象具有较好的性能。我有点费力地重建了现有的实现,以自学它是如何工作的。然后切换到使用开放源码的tensorflow对象检测api。

最近发布的工具集(https://github.com/tensorflow/models)为测试模型提供了更快的周转时间,并准备好了预先训练的权重。它允许我更多地关注工程的实现,并且很少涉及每个神经网络实现的细节。

在该论文(https://arxiv.org/abs/1611.10012)中,他们讨论了不同方法的性能权衡。例如,SSD(类似于YOLO)对于中型到大型对象来说很好,但是对于小型对象来说,它比Faster R-CNN更糟糕。在实践中我们很难让SSD在Bosch的小交通信号灯数据集(https://hci.iwr.uni-heidelberg.de/node/6132)上收敛。相反,包含Resnet的Faster R-CNN能得到良好的结果。

想看到更多吗?查看完整的视频:测试视频(https://youtu.be/5e_9r9DROEY)或训练视频(https://youtu.be/EN2jZ-9LRjs)。

为Udacity自动驾驶汽车调整Bosch数据

我们一直在做一个关于自动驾驶汽车的有限测试。在一个很小的封闭轨道上,汽车必须成功地遵循一组路标并识别交通信号灯。

如果你对技术细节感兴趣,可以查看代码https://github.com/nhiddink/SDCND_Capstone_TEC

双转移学习

由于可用的数据量有限,我们严重依赖转移学习。我们可以使用以下数据集:

  • COCO(http://cocodataset.org/#home)预先训练网络
  • Bosch交通信号灯数据
  • Udacity真实数据(150个样本)或sim数据(260个样本)

我们得到了很好的结果。

为什么要使用深度学习的方法?

交通信号灯有不同的数量、位置、形状、大小和布局。基于深度学习的方法,这些差异通过深度学习是“容易的”解决的——只收集在汽车行驶区域的交通信号灯类型的例子。

高精度定位的动机

高精度的边界框允许高精度距离估计。距离估计的越准确,我们就越接近其他数据点。看下图,交通信号灯在十字路口附近还是远侧呢?

实时性能(10 + Hz)

起初,我们需要大约220 ms的推理时间,与滑动窗口的方法相比较,这是一个更快速的方法,我个人认为3 – 4帧每秒不是实时的。

根据论文的建议,我们将该区域建议数量从原来的300个减少到50个。在推理时间里(~220 ms 到~80 ms),给了我们一个具有类似精度的~3x的速度。预测在1280×720图像中不到1%的交通信号灯。例如,在上述谷歌的论文中,他们使用了2040×1080或2.3x像素的图像。

失败案例

有许多系统还没有准备好用于生产的示例。举个例子,在下面的图片中的灯光被认为是黄色的。

在拥有更多数据或者更多培训的情况下,很多这样的案例可以被解决。例如,我们训练了大约2万次迭代,这大概是真正收敛(最优模型的权重值)需要的1 / 10。

最后一步

在测试过程中,我意外地在真实图像上运行了模拟图像的网络。

某种程度上来说,它可以工作,而且运行得很好。看看下面这个例子的结果:

  • 第一张:Bosch训练(不同风格的图像)=没有超过50%confidence的预测
  • 第二张:Sim训练(上面的图片)=正确预测
  • 第三张:真实的数据训练(bosch数据之后)=错误预测

这是一件有趣的事情。从理论上讲,你可以模拟任何你想要的情况,把它提供给一个深度学习系统,然后将其通用化到现实生活中的情况。

深度学习代码:https://github.com/swirlingsand/deeper-traffic-lights 自动驾驶汽车代码:https://github.com/nhiddink/SDCND_Capstone_TEC 测试视频:https://youtu.be/5e_9r9DROEY 训练视频:https://youtu.be/EN2jZ-9LRjs

原文发布于微信公众号 - ATYUN订阅号(atyun_com)

原文发表时间:2017-10-04

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

深度神经网络全面概述:从基本概念到实际模型和硬件基础

选自arxiv 作者:Joel Emer等 机器之心编译 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由 IEEE F...

42819
来自专栏数说工作室

logistic回归:从生产到使用【上:使用篇】

logistic回归:从生产到使用【上:使用篇】 前面介绍过几个算法,如KNN、决策树等(在微信公众号“数说工作室”中回复“jrsj”查看,不要引号),都可以用...

3426
来自专栏AI研习社

用基于 TensorFlow 的强化学习在 Doom 中训练 Agent

深度强化学习(或者增强学习)是一个很难掌握的一个领域。在众多各式各样缩写名词和学习模型中,我们始终还是很难找到最好的解决强化学习问题的方法。强化学习理论并不是最...

2805
来自专栏机器之心

教程 | 用于金融时序预测的神经网络:可改善移动平均线经典策略

2898
来自专栏CVer

[计算机视觉论文速递] 2018-03-07

通知:这篇推文有18篇论文速递信息,涉及目标检测、图像分割和GAN等方向。 [1]《A new stereo formulation not using pix...

3969
来自专栏新智元

关于 NIPS 2016 你应该知道的 50 件事情

【新智元导读】Andreas Stuhlmüller 目前在斯坦福 Noah Goodman 教授 Computation & Cognition lab 当博...

2994
来自专栏腾讯技术工程官方号的专栏

协同过滤在新闻推荐CTR预估中的应用

作者简介:minlonglin,AI平台部Y项目组员工。2012年毕业于中国科学技术大学计算机科学与技术学院,读博期间主攻集成学习、类别不平衡分类等方向,期间曾...

2628
来自专栏CVer

[计算机视觉论文速递] ECCV 2018 专场9

Amusi 将日常整理的论文都会同步发布到 daily-paper-computer-vision 上。名字有点露骨,还请见谅。喜欢的童鞋,欢迎star、for...

722
来自专栏TensorFlow从0到N

TensorFlow从1到2 - 3 - 深度学习革命的开端:卷积神经网络

关于全连接神经网络(Full Connected Neural Network,FC)的讨论已经说的不少了,本篇将要介绍的是,从2006年至今的神经网络第...

4097
来自专栏量子位

想让AI读懂时尚?看看亚马逊新发的这两篇论文

安妮 编译整理 量子位 出品 | 公众号 QbitAI 亚马逊想让AI读懂时尚。 继在Echo Look中加入穿搭指导功能引发大量吐槽后,目前,亚马逊又发表了两...

3064

扫描关注云+社区