【学术】卷积神经网络教你如何还原被马赛克的文本图像

对人类来说,将带有文字的图像锐化是很容易的。以图1为例。

图1:被锐化的图像

把图1恢复为图2也不是件很困难的事。

图2:原图

然而,我们太懒了的,并且不想这样做,所以我们尝试用神经网络来自动实现图片的不模糊化!

发展

得到被模糊的文本的实图和它们的不模糊的副本是不容易的,因此在时间的兴趣中产生了一个训练集。生成文本图像并将它用计算机软件进行模糊处理是很简单的,一个python脚本利用PIL(python图片库)就可以完成。训练集的大小可以储存10.000张图片。训练集的例子可以在图3中找到。

图3:训练集的例子。上一行显示输入图像,而下一行显示输出目标。

让Fθ成为不模糊图像神经网络,Y1,Y2,…,Yn成为图像,然后X1,X2,…,Xn作为模糊的副本。我们为神经网络找到参数θ,该神经网络最小化了每个图像的每个像素的均方差。

为了解决这一问题,我们尝试了两种Fθ的架构。然而,它们都是某种形式的卷积神经网络。

第一个架构尝试的是一些卷积层,它们具有相同的输入和输出维度,也就是说,当在tf.conv2d函数中填充 “SAME”设置时,才会得到结果。然而,中间层的通道数量并不是固定的。在层间,除了最后一层使用的是一个被激活的正常的ReLU,LeakyReLU被用作激活函数。由此来看,这个结构不能很好的运作。

图4:左列:模糊的图像,中间的列:目标输出,右列:输出的图像

看看图4中神经网络的输出,它只是简单地学习了恒等函数。这似乎是成本函数(cost function)的一个局部极小值。改变层数,改变激活函数,改变成本函数和改变中间通道的数量,对网络收敛没有任何影响,但局部极小值不能以这种方式被避免。因此, 我们需要重新设计。

卷积层被允许缩小图像的尺寸,而不是强迫卷积的输出维度对所有的层都要一样。这相当于在tf.conv2d函数中填充“VALID”设置。然而,要计算每个像素的均方差的话,输出的图像需要与输入图像尺寸相同。因此,解卷积层需要再一次放大图像。

图5:尝试的第二个神经网络结构

图5显示了尝试的第二种神经网络结构。前四个转换是带有LeakyReLU激活的卷积。前两个卷积的stride为2,但是其他的stride为1。(注:Stride: 移动切片的步长,影响取样的数量。)四个卷积(cony)后面跟着去卷积(decony)。在每一次卷积之后,除了最后一层都是一个常规的ReLU外,LeakyReLU被用作激活函数。通道的数量是选被择的,这样在中间表示中至少会有和输入图像一样多的特性,所以理论上来看,所有来自输入图像的信息都可以被保留。通过这种架构,网络能够更好地适应数据。

训练

采用批量梯度下降法来训练神经网络。批处理大小是8,学习速率设置为0.001。总共的训练时间是约为6小时,共有18次训练。图6显示了训练的过程。

图6:训练期间的cost,橙线是验证集的cost(未经过训练的一个单独的数据集),而绿线是训练集的cost。

为训练找到一个好的学习率是有挑战性的。网络只会在学习率接近学习率的情况下快速学习,这使得训练产生了分歧。所以我们用一种新颖的方法来寻找一个好的学习率: 简单地在神经网络上打印一个参数,在这里使用一个首层的参数,然后在每次迭代之后打印出来。如果没有改变,那么提高学习率。如果它正在发生变化,并且迅速变大,那么训练不仅变得简单,而且还为这项工作带来了巨大的成果。

在选择学习率之后,神经网络开始比以前更好地适应训练数据。首先,它了解了正方形周围的黑色部分,然后用正确的颜色对正方形进行着色。然后慢慢地,网络学会了将这些字母输出到不模糊的情况下。这种进展可以在图7到9中查看。左列是神经网络的输入图像,中间列是目标输出,右列是神经网络的输出图像。

图7:500次迭代

图8:3000次迭代

图9:22000次迭代

图10:来自验证组的图像。左边:原始图像,中间:模糊的图像,右边:训练后的输出图像。

图10显示了神经网络如何在以前没有见过的模糊图像上执行任务。神经网络似乎能够很好地总结出只有10.000张图片和18个训练期的验证集的特点。第四行图像显示,有时网络会给图像增加噪点。这也许可以通过更长的训练来改变这一缺陷。

这项工作的实际用途是用智能手机拍下被锐化的文本照片。图11显示了两个图像,顶部的图像是文本的图像,底部的图像是由神经网络生成的。底部图片的不模糊度是非常糟糕的。罪魁祸首可能是训练数据所遵循的简单分布。为了提高质量,人们可能会试图使训练数据中添加的模糊效果变得更加复杂。然而,这是一种推测,因此需要更多的工作来确定是否提高了图片的整体质量。

  • 这个项目的代码:https://github.com/gardarandri/TextSharpener

原文发布于微信公众号 - ATYUN订阅号(atyun_com)

原文发表时间:2018-01-10

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

学界 | CIFAR-10+ImageNet=?CINIC-10!

CINIC-10 可以直接替代 CIFAR-10。由于 CIFAR-10 太小(太简单),而 ImageNet 又太大(太难),所以我们将 CINIC-10 编...

1213
来自专栏机器之心

学界 |「分段映射」帮助利用少量样本习得新类别细粒度分类器

2492
来自专栏人工智能

神经网络与反向传播算法

1、前言 先简单的说下神经网络吧。 简单来说就是模拟大脑的神经元。 前端会有一大批数据输入,例如,前端输入了一张图像的所有像素点。 中间层会有成千上万个网络数据...

2076
来自专栏智能算法

卷积神经网络工作原理直观解释

其实我们在做线性回归也好,分类(逻辑斯蒂回归)也好,本质上来讲,就是把数据进行映射,要么映射到一个多个离散的标签上,或者是连续的空间里面,一般简单的数据而言,我...

3239
来自专栏智能算法

卷积神经网络工作原理直观解释

其实我们在做线性回归也好,分类(逻辑斯蒂回归)也好,本质上来讲,就是把数据进行映射,要么映射到一个多个离散的标签上,或者是连续的空间里面,一般简单的数据而言,我...

3405
来自专栏企鹅号快讯

机器学习——K-均值算法理论

机器学习(十九) ——K-均值算法理论 (原创内容,转载请注明来源,谢谢) 一、概述 K均值(K-Means)算法,是一种无监督学习(Unsupervisedl...

24810
来自专栏AI研习社

卷积神经网络工作原理直观的解释?

其实我们在做线性回归也好,分类(逻辑斯蒂回归)也好,本质上来讲,就是把数据进行映射,要么映射到一个多个离散的标签上,或者是连续的空间里面,一般简单的数据而言,我...

2735
来自专栏CVer

大牛分享 | 基于深度学习的目标检测算法综述(三)

1. Two/One stage算法改进。这部分将主要总结在two/one stage经典网络上改进的系列论文,包括Faster R-CNN、YOLO、SSD等...

2550
来自专栏机器学习算法与Python学习

直观理解深度学习的卷积操作,超赞!

近几年随着功能强大的深度学习框架的出现,在深度学习模型中搭建卷积神经网络变得十分容易,甚至只需要一行代码就可以完成。

2471
来自专栏智能算法

卷积神经网络工作原理直观解释

其实我们在做线性回归也好,分类(逻辑斯蒂回归)也好,本质上来讲,就是把数据进行映射,要么映射到一个多个离散的标签上,或者是连续的空间里面,一般简单的数据而言,...

1812

扫码关注云+社区

领取腾讯云代金券