学界 | 战胜42位皮肤科专家,韩国团队训练5万例数据诊断灰指甲

AI 科技评论按:人工智能在专业医学领域全面战胜人类医生的例子还很少见。最近一项深层神经网络算法在诊断灰指甲方面,成功击败了 42 位皮肤科专家。灰指甲是一种常见的真菌感染,它会让指甲脱色和脆化,这种疾病每年困扰着大约 3500 万美国人。 这项成功很大程度依赖于一个韩国研究团队的努力,他们收集了大约5万张指甲/趾甲的图片。大量的训练数据,是深层神经网络成功识别灰指甲,战胜人类医学专家的关键所在。

韩国首尔的皮肤科医生、临床医生 Seung Seog Han 表示,「迄今为止,在很多研究——比如识别糖网、皮肤癌和阅读胸片等项目中,人工智能已经接近了人类专家的水平。但这项研究首次表明,人工智能已经超越了人类专家。」

过去人工智能和皮肤科医生之间的较量通常势均力敌。但在这项研究中,在一个特定场景下的三次实验里,只有一名皮肤科医生的表现全部略优于深度神经网络。而且,值得注意的是,对于简单病例,深层神经网络的优势更加明显。

这项研究成果发表在了 2018 年 1 月 19 日的 PLOS ONE 杂志网络版上。参与这项研究的除了 Seung Seog Han,还有韩国翰林大学的皮肤病学教授 Gyeong Hun Park,以及韩国蔚山大学的皮肤病学教授 Sung Eun Chang。

作为一名医生,Han 在日常工作中接触到了各种各样的皮肤病。同时,他也学习了不少计算机编程语言方面的知识,比如 C++和 Python。后来,AlphaGo 击败世界围棋冠军李世乭,又激发了Han探索深度学习的兴趣。

人类往往难以把握大数据的规律,但深度学习算法在大数据的模式检测方面有着独到的优势。在这个案例中,韩国的研究人员发现可以用微软研究院开发的深度学习算法帮助医生从数字照片中识别可能的灰指甲感染病例。

但任何深度学习模型都需要基于大量的数据进行训练。收集灰指甲病例的图片给研究人员提出了巨大的挑战,因为这些图片通常没有标准和统一的格式。很多图片是从不同角度拍摄的,里面既有健康的指甲/趾甲,也有受到感染的指甲\趾甲。此外,受深度学习算法的技术限制,所有图像都要调整到 224 x 224 像素大小,这样一来很多图片就无法识别了。

韩和他的同事们训练了一种名为 Faster R-CNN 的目标检测算法,对图像进行识别和裁剪,使图片中只包含受感染的指甲/趾甲,然后再将图片放大,这样就得到了一个可以用于训练深层神经网络的数据集。数据集中的大部分图片都来自于一个 Han 在 2007 年开发的、名为 MedicalPhoto 的皮肤病临床照片管理程序。

即便如此,Han 还是要手动读取 Faster R-CNN 裁剪出来的 10 万张照片,并对每张照片进行两次标记,将不准确或不合适的指甲/趾甲照片剔除,以保证训练数据的准确性。即使 Han 平均每 10 秒钟能处理一张照片,且每天工作数小时,这项工作也需要耗费他大约 550 个小时,合计超过 70 天。

该数据集帮助训练了用于识别病症的卷积神经网络——微软的 ResNet-152 和牛津大学的 VGG-19 模型,以执行识别指甲真菌感染可能病例的工作。这种深度学习方法表现优于 42 位皮肤科专家组成的小组——其中包括 16 名教授、18 名临床医生和 8 名住院医师。

研究人员表示,在额外的测试中,深度学习算法的表现也通常优于 5 名最好的皮肤科医生。他们还发现,人工智能的诊断评估也比一般内科医生、医学生、护士和非医务人员的诊断结果要好。

该研究团队发布了他们深度学习算法的早期演示版本,任何人都可以通过网站或下载 Android 智能手机应用程序进行尝试。通过在网站和应用程序中收集数据,研究人员希望发现该人工智能算法在实际医疗实践中使用时可能会出现哪些问题。

Han 和他的同事们也在尝试用深度学习诊断皮肤癌等其他皮肤疾病。相关的研究论文发表在了 2018 年 2 月 8 日的《Journal of Investigative Dermatology》网络版上。

这类研究表明,人工智能依赖于临床影像来诊断疾病,因此在远程医疗领域更有用武之地。人类皮肤科医生在做诊断时还是要结合病人的病史和其他临床信息,因为对于大多数人来说,仅凭影像就下诊断还是显得太过草率了。

Han 和他的同事们认为,他们的研究对于全科医生尤其有用,因为病人们经常会向全科医生反馈自己的指甲和皮肤问题。Han 说道:「人工智能的诊断要比普通临床诊断更为准确,我认为它对全科医生确定灰指甲的治疗方向有所帮助。」

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2018-02-28

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏邱翔的终身学习

人工智能,能婴儿乎?

万维刚老师在其专栏里介绍一篇关于人工智能和婴儿的文章,非常有启发性,今天跟大家分享一下。

2377
来自专栏生信宝典

Cell:荧光标记out了,AI不用“侵入”也能识别细胞死活和类型

1194
来自专栏新智元

2017年最值得关注的人工智能概念之“迁移学习”

【新智元导读】 微软全球资深副总裁 Peter Lee 认为,迁移学习同样具有极高的应用潜力。过去,机器学习在搜索和信息检索等领域中的实用价值较为单一,大多聚焦...

32412
来自专栏华章科技

如何才能从新手到大师?

熟悉写作技巧的畅销书作者常常会用一个清晰的行动准则,如“练习1万小时成为专家”“21天养成好习惯”等来激发你的行动。但是对于究竟有多少人能够坚持1万小时,1万小...

621
来自专栏新智元

深度 | RNN 之父 Schmidhuber:21世纪最重大发明——超级智能崛起

【新智元导读】刚刚过去的ACM会议上,递归神经网络(RNN)之父、瑞士人工智能实验室科学事务主管 Jürgen Schmidhuber 接受专访,畅谈深度学习技...

4126
来自专栏人工智能快报

剑桥科学家用两百万段视频教会人工智能预测未来

人工智能系统可以预测场景如何展开,也可以设想不久的将来。 对于静止画面,深度学习算法生成的微视频可以预测接下来可能发生的场景。例如,如果展示的是一幅火车站的场景...

3507
来自专栏新智元

成为未来几年最炙手可热的机器学习人才,基本功、秘密武器和弹药补给

【新智元导读】工业界未来几年需要什么样的机器学习人才?哪些热点值得追?作者认为,巩固基础、寻找自己擅长的领域和机器学习交叉点可以帮助你在未来的就业市场变得炙手可...

2924
来自专栏新智元

软件正在吃掉我们的世界,深度学习也正吃掉机器学习

【新智元导读】人工智能、机器学习、深度学习方面的文章铺天盖地,向人们传播人工智能是改变世界最具竞争力的技术,相关企业应该抓住机会作深入研究,但是人们对于这三个词...

3418
来自专栏大数据文摘

对大脑的逆向工程是不是走向强AI的唯一出路?

1488
来自专栏新智元

人类首创能生成神经细胞的“迷你大脑”,更精确模拟神经网络!

【新智元导读】研究人员用人类胚胎干细胞在实验室里成功培育出了3D版的“迷你大脑”,可以真实模拟大脑的发育和功能,以及神经细胞间的通信方式,对人类认识大脑,治疗脑...

532

扫描关注云+社区