ICML 2016精选论文 | AI科技评论周刊

上一周,ICML 2016在纽约画上了完美的句号。这个会议(International Conference on Machine Learning)已经逐渐发展为了由国际机器学习学会(IMLS)主办的世界最顶级的机器学习领域会议之一。来自世界各地的机器学习领域的专家们都以论文投稿的方式向大会递交了自己最新的研究成果,其中包括一篇来自百度硅谷实验室的语音识别的论文。

大会主要采用演讲和PPT展示的形式,辅以一定程度上的交流讨论会来进行。整个会议议程已经于24日全部结束,最终评出了三篇最佳论文奖和一篇最具时间价值奖,其中Google的DeepMind独揽了其中的两个奖项,过去的一周里我们选取了大会中一些我们认为比较有意义的论文并进行过翻译,在这里给大家回顾一下。

谷歌ICML获奖论文 看像素递归神经网络如何帮图片“极致”建模 ?

这篇论文获得了最佳论文奖。目前图像识别领域的深度学习通常聚焦于某个特定领域的识别应用,因为概括出一个相对通用的模型不管对算法设计者建立规则和机器概括和学习图像中的规则都是很难的。因此谷歌的这篇通过二维循环特性来进行有效的通用图像识别建模的论文获得今年ICML2016的最佳论文奖也不奇怪了。Google在论文中对自己的方法给出了详细的推导和应用过程,这项进步意味着目前的深度学习算法能得到的训练图片的量得到了很大的扩展,甚至可以将任意图片交给其用来训练。

算法采集的样本

利用CNN来学习任意图结构

这篇论文的选题同谷歌的那篇类似,也是研究一种通用化的图像识别算法。由NEC欧洲海德堡实验室的Mathias Niepert、Mohamed Ahmed、Konstantin Kutzkov完成。但是在结果上表现的没有Google的算法好,因此没能获奖。

新的算法在不同图形感受域上的每秒处理速率

百度ICML论文:端对端中英文语音识别

这篇论文来自百度硅谷实验室,吴恩达也参与了论文的研究和撰写,在这篇论文中,百度使用神经网络代替了传统的语音识别的分析结构,使得算法的适应性得到了提高,表现的结果是算法可以同时识别普通话和英语两种语言。并且可以“兼容”多种方言。百度表示,除了算法的设计,这项研究的进展还要归功于对HPC(超级计算机)的恰当应用,这极大的增加了百度对算法迭代的速度。推进了研究的进程。

百度的算法和人类在单词错误率(WER)上的表现比较

这违反直觉的“升噪”方法,反而能很好的解决激活函数梯度弥散的问题

这篇论文的最大亮点在于突破了传统的思维方式,独辟蹊径的改善了梯度弥散的问题。梯度弥散指的是在神经网络层数过多的时候,算法后向传播的途中卷积核的输入落入了函数的饱和区,因此得到的梯度很小,最终可能导致在算法正常发挥的情况下结果偏离正确值。通常来说,一般人的思路是尽可能增加每层的函数和初始值的精确性,但这篇论文反其道而行之,向函数中注入适当的噪音,反而起到了很好的抑制梯度弥散的作用。

参照模型(Zaremba & Sutskever,2014)的训练曲线,及其“学习执行”任务中的噪音变量问题。噪音网络可以更快地汇聚,并达到更高的精度,显示了噪音激活可以帮助更好地优化此类难以优化的任务。

阿尔法狗CTO讲座: AI如何用新型强化学习玩转围棋扑克游戏

DeepMind的科学家、围棋团队主程序员David Silver分享了它在增强学习方面应用的论文。如果说深度学习是教机器“认知”,增强学习就是教会机器人“行动”。通过不断的训练、试错来教会机器人或算法在各种情况下做出相应认知的一门科学。因此“下棋”其实也属于增强学习的一种应用。在某种程度上来说。这篇以棋牌类游戏应用为主题的论文其实就是一篇AlphaGo的解密。你们难道不好奇吗~

算法在德州扑克中与 SmooCT 对战的表现。每次评估的标准误差小于 10 mbb/h

关注这些最前沿的学术会议能让我们对AI最新的应用的可能性有足够的了解,也是了解国内和国际科研实力对比的一个极好的途径,我们会继续保持关注大型的学术会议,为大家第一时间献上其最新的亮点。

图片来自unist.ac.kr

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2016-06-26

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏新智元

【经典荐书】Yoshua Bengio大神教你深度学习(705页PDF)

Yoshua Bengio教授(个人主页)是机器学习大神之一,尤其是在深度学习这个领域。他连同Geoff Hinton老先生以及 Yann LeCun(燕乐存)...

3426
来自专栏CreateAMind

深度学习下一步如何发展?

来源:https://www.zhihu.com/question/47602063/answer/150845355

651
来自专栏编程

NLP秘笈,从入门到进阶

自然语言处理(NLP)作为人工智能研究的核心领域之一,长久以来都受到广泛关注。微软全球执行副总裁沈向洋博士曾表示“ 懂语言者得天下,人工智能对人类影响最为深刻的...

2209
来自专栏机器之心

变革尚未成功:深度强化学习研究的短期悲观与长期乐观

选自alexirpan 机器之心编译 参与:Nurhachu Null、刘晓坤 深度强化学习是最接近于通用人工智能(AGI)的范式之一。不幸的是,迄今为止这种方...

3636
来自专栏CreateAMind

自动驾驶核心技术之三:环境感知

自动驾驶四大核心技术,分别是环境感知、精确定位、路径规划、线控执行。环境感知是其中被研究最多的部分,不过基于视觉的环境感知是无法满足无人驾驶要求的。

772
来自专栏新智元

【深度】“信息瓶颈”理论揭示深度学习本质,Hinton说他要看1万遍

【新智元导读】在深度学习应用突飞猛进的现在,我们比任何时候都急需理论上的突破。日前,希伯来大学计算机科学家和神经学家Naftali Tishby等人提出了一种叫...

2464
来自专栏AI科技评论

活动 | 中国自动化学会「深度与宽度强化学习」智能自动化学科前沿讲习班

中国自动化学会围绕「深度与宽度强化学习」这一主题,在中科院自动化所成功举办第 5 期智能自动化学科前沿讲习班。

925
来自专栏AI派

近邻推荐之基于物品的协同过滤

在了解了基于用户的协同过滤之后,还有基于物品的的协同过滤。它们的原理非常类似。在电商平台中经常看到“看了又看”,“看过它的人还看”等等推荐,这些推荐背后对应的算...

3235
来自专栏新智元

专访Ian Goodfellow:欲在谷歌打造GAN团队,用假数据训练真模型

【新智元导读】 近日,从Open AI 重回谷歌大脑的 Ian Goodfellow 接受Wired 专访,这篇文章被Google+推荐为关于对抗生成网络历史和...

33710
来自专栏华章科技

一文读懂机器学习,大数据/自然语言处理/算法全有了……

机器学习是什么,为什么它能有这么大的魔力,这些问题正是本文要回答的。同时,本文叫做“从机器学习谈起”,因此会以漫谈的形式介绍跟机器学习相关的所有内容,包括学科(...

681

扫描关注云+社区