韩国国立大学机电系教授 , 李群自动化首席科学家Frank C.Park : 工业机器人中的机器学习很重要

很多人都知道, 将机器学习应用于实体机器人是充满挑战的,因为控制行为远比辨认图片中的物体复杂得多。比如让工业机器人自学”抓取多种物品,让工业机器人通过看视频学会调制鸡尾酒,让工业机器人也用上自学习软件,在训练完一个加载在机器人上的机器学习系统后,还要将这个机器学习系统与特殊的机器人动作相适应,来达到工业机器人非常讲究地工业机器人和环境的融合。

但在工业机器人创新创业者眼里,这条路是不可避免的。近日在东莞举办的李群自动化年度发布会上,他们聘任了新的首席科学家Frank C.Park,韩国国立大学机电系教授。在演讲过程中,以一个生动的PPT向我们展示了工业机器人中的机器学习和也可以相当完美。以下是雷锋网截取的精华内容:

三菱电机的Kodaira说过,机器人行业迫切需要系统集成方面的创新,工业机器人只是一个部件,只有整合到系统里它才有价值。但是每个系统都需要专门定制,与其它系统的链接也需要花功夫。因此,整个工业机器人系统的成本往往是3倍到20倍机器人硬件的成本。而这其中,软件规划一项至少占了40%。

要打造符合时代趋势更好的工业机器人(工业机器人库),我们需要通过软件来提高。这其中包括最优规划生成(用最少的时间,损耗最小的能量);任务的制定和优化;模拟(机器人工作单元中的模拟,工厂中的模拟)。

这张图是韩国工业机器人的发展历史:从韩国2002年出现韩国现代六轴机器人到现在irLib 2016极力推崇的动作规划。

这里我要讲的是,irLib除了单个机器人的优化,还能应用于多机器人,多任务的优化。具体包括,在多机器人多任务中,确定机器人的最佳位置,多机器人协同的任务。

下面以端到端的能量轨迹举例。在一个正常的机械臂中,输入扭矩减少30%-40%,能量损失就会减少5-6%。

当然,除了优化,工业机器人中的检验也很重要。

这时候今年各种AI会议上大热的机器学习就派上用场了,机器学习在检验中的重要性不言而喻。比如,基于视觉的机器学习,在查看智能机屏幕,产品标签时都要大量用到。比如,基于声音的机器学习,在检查耳机孔质量的时候能够用到。比如,在瓶口纹路检验的时候能够用到。

换而言之,只要是有感官输入的地方,都能在检验系统里用到相关的机器学习。最后,我想表达的是,我们的目标就是通过更先进的软件和算法,来达到更好的工业自动化。

小结:

在工业机器人中加入机器学习,根据业内人士的说法,目前还只是一个噱头多过于实践的现状。但也有一些人尝鲜者欣然尝试,比如去年十二月份,Fanuc在东京国际机器人展览会上就展示了一台经强化学习训练的机器人,这个机器人使用了一种名为深度强化学习的技术,来训练它自己,可随时学习新的任务。它在尝试拾起物品的同时,能够抓取这个过程的录像。不管每次它是成功了还是失败了,它都会记住物品长什么样的,用它学到的知识改进控制它行动的深度学习模型或大型神经网络。

但面对现在柔性化生产越来越高的呼声,我们不能再像过去一样,让工业机器人要执行一个复杂的新任务时,就花上数周时间来重新编程,可以想象,如果机器人能够在胜任新工作之前看着别人先做一遍就“学会“”这个新动作,这会让现在的工业机器人生产过程产生质的变化。也会让我们在工业4.0的赶超大潮中,不再跟国外的差距那么大。

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2016-07-15

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏新智元

【清华 AI 公开课】IJCAI理事长杨强:人工智能在企业的落地是一门大学问

1223
来自专栏腾讯高校合作

香港中文大学终身教授贾佳亚博士加盟腾讯优图实验室

2017年5月15日,香港中文大学终身教授贾佳亚博士加盟腾讯优图实验室。作为杰出科学家,贾佳亚教授将负责计算机视觉、图像处理、模式识别、机器学习等人工智能领域的...

40711
来自专栏PaddlePaddle

技术|深度学习行业应用及就业方向大猜想

一直以来,大家都在盛传深度学习是工程师的风口,但是对于深度学习和行业的联系却很少被提及。

1021
来自专栏腾讯大讲堂的专栏

专访腾讯“优图团队”:腾讯内部的核心技术团队是这样服务产品团队的

一个偶然的机会,36氪和“优图团队”进行了接触,他们是腾讯内部专注于图像处理、模式识别、机器学习、数据挖掘等领域的核心技术团队,由毕业自清华、北大、中科院、上海...

2006
来自专栏镁客网

科技界新网红、云计算“终结者”,这一技术正从边缘走向中心

“计算正从中央走向边缘”、“计算边缘化”……近日来,在大大小小各类有关人工智能的论坛或峰会上,我们或多或少的听见以上言论,其中的关键点只有一个——边缘计算。

601
来自专栏新智元

徐立:1200层神经网络夺冠ImageNet,深度学习越深越好?| 新智元 AI 领军人物专访

【新智元导读】计算机视觉领域的创业创新正呈现蓬勃发展之势。基于与高校实验室紧密的合作,商汤走出了一条自主研究核心算法的道路,连续在ImageNet等国际大赛上刷...

2786
来自专栏专知

十大成长性人工智能技术!

为加强对新一代人工智能技术的前瞻预判,把握全球技术创新动态及发展趋势,中国电子学会近期走访人工智能相关企业及高校院所专家,遴选发布了十项最具特色的成长性技术,...

892
来自专栏AI科技大本营的专栏

专访 | LUNA再次夺冠,科大讯飞向世界宣告自己的实力不止于语音

记者 | 谷磊 近日,科大讯飞可谓喜报连连,除了日益蹿升的股价,技术方面的好消息也不绝于耳。8月7日,科大讯飞在其官方微信公众号上给外界传递了一封喜报,并附以“...

2764
来自专栏BestSDK

微信智能语音服务上线,集成语音识别、语音合成、声纹识别等功能

编辑导语 近日,腾讯云正式上线智能语音服务。智能语音是由腾讯微信AI团队自主研发的语音处理技术,可以满足语音识别、语音合成、声纹识别等需求。 这是继微信支付提速...

4848
来自专栏大数据文摘

[译]大数据将何去何从?规范性分析的三个应用实例

1242

扫码关注云+社区