理解深度学习

1、现状:

深度学习现在非常热,各种会议都要和这个沾点边。百度大脑,谷歌大脑计划搞的都是这个。在一些领域取得了非常不错的效果,如图片识别,语音识别,在安全领域甚至还有识别加密的协议等。如图片,语音领域实验室准确率都超过了90%。

2、深度学习的本质

一个典型的机器学习样例如上,从开始的通过传感器(例如CMOS)来获得数据。然后经过预处理、特征提取、特征选择,再到推理、预测或者识别。最后一个部分,也就是机器学习的部分,绝大部分的工作是在这方面做的,也存在很多的paper和研究。

而中间的三部分,概括起来就是特征表达。良好的特征表达,对最终算法的准确性起了非常关键的作用,而且系统主要的计算和测试工作都耗在这一大部分。但,这块实际中一般都是人工完成的。靠人工提取特征。

然而,手工地选取特征是一件非常费力、启发式(需要专业知识)的方法,能不能选取好很大程度上靠经验和运气,而且它的调节需要大量的时间。既然手工选取特征不太好,那么能不能自动地学习一些特征呢?答案是能!Deep Learning就是用来干这个事情的,看它的一个别名UnsupervisedFeature Learning,就可以顾名思义了,Unsupervised的意思就是不要人参与特征的选取过程。

深度学习的实质,是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。因此,“深度模型”是手段,“特征学习”是目的。区别于传统的浅层学习,深度学习的不同在于:1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;2)明确突出了特征学习的重要性,也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更加容易。与人工规则构造特征的方法相比,利用大数据来学习特征,更能够刻画数据的丰富内在信息。

3、深度学习和传统神经网络的关系

Deep learning本身算是machine learning的一个分支,简单可以理解为neural network的发展。大约二三十年前,neural network曾经是ML领域特别火热的一个方向,但是后来确慢慢淡出了,原因包括以下几个方面:

1)比较容易过拟合,参数比较难tune,而且需要不少trick;

2)训练速度比较慢,在层次比较少(小于等于3)的情况下效果并不比其它方法更优;

所以中间有大约20多年的时间,神经网络被关注很少,这段时间基本上是SVM和boosting算法的天下。但是,一个痴心的老先生Hinton,他坚持了下来,并最终(和其它人一起Bengio、Yann.lecun等)提成了一个实际可行的deep learning框架。

Deep learning与传统的神经网络之间有相同的地方也有很多不同。

二者的相同在于deep learning采用了神经网络相似的分层结构,系统由包括输入层、隐层(多层)、输出层组成的多层网络,只有相邻层节点之间有连接,同一层以及跨层节点之间相互无连接,每一层可以看作是一个logistic regression模型;这种分层结构,是比较接近人类大脑的结构的。

而为了克服神经网络训练中的问题,DL采用了与神经网络很不同的训练机制。传统神经网络中,采用的是back propagation的方式进行,简单来讲就是采用迭代的算法来训练整个网络,随机设定初值,计算当前网络的输出,然后根据当前输出和label之间的差去改变前面各层的参数,直到收敛(整体是一个梯度下降法)。而deep learning整体上是一个layer-wise的训练机制。这样做的原因是因为,如果采用back propagation的机制,对于一个deep network(7层以上),残差传播到最前面的层已经变得太小,出现所谓的gradient diffusion(梯度扩散)。

5、总结

深度学习是关于自动学习要建模的数据的潜在(隐含)分布的多层(复杂)表达的算法。换句话来说,深度学习算法自动的提取分类需要的低层次或者高层次特征。高层次特征,一是指该特征可以分级(层次)地依赖其他特征,例如:对于机器视觉,深度学习算法从原始图像去学习得到它的一个低层次表达,例如边缘检测器,小波滤波器等,然后在这些低层次表达的基础上再建立表达,例如这些低层次表达的线性或者非线性组合,然后重复这个过程,最后得到一个高层次的表达。

Deep learning能够得到更好地表示数据的feature,同时由于模型的层次、参数很多,capacity足够,因此,模型有能力表示大规模数据,所以对于图像、语音这种特征不明显(需要手工设计且很多没有直观物理含义)的问题,能够在大规模训练数据上取得更好的效果。此外,从模式识别特征和分类器的角度,deep learning框架将feature和分类器结合到一个框架中,用数据去学习feature,在使用中减少了手工设计feature的巨大工作量(这是目前工业界工程师付出努力最多的方面),因此,不仅仅效果可以更好,而且,使用起来也有很多方便之处,因此,是十分值得关注的一套框架,每个做ML的人都应该关注了解一下。

当然,deep learning本身也不是完美的,也不是解决世间任何ML问题的利器,不应该被放大到一个无所不能的程度。

原文发布于微信公众号 - 大数据和云计算技术(jiezhu2007)

原文发表时间:2015-11-14

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技评论

干货 | 图像比赛的通用套路有哪些?Kaggle比赛金牌团队为你解答

AI 科技评论按: Kaggle 是全世界首屈一指的数据科学、机器学习开发者社区和竞赛平台,来看看 Kaggle 亚马逊雨林比赛金牌团队的经验分享吧。 日前,中...

4235
来自专栏AI科技评论

学界 | CVPR 2018论文解读:让神经网络学习比较来实现少样本学习

方法非常简单通用,但效果很不错,在少样本学习及零样本学习的几个基准数据集上都取得了相当好的结果。

973
来自专栏机器学习算法与Python学习

机器学习(1)之入门概念

关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 机器学习是什么 机器学习是什么?实际...

26310
来自专栏机器之心

专栏 | 极限元语音算法专家刘斌:基于深度学习的语音生成问题

机器之心专栏 作者:刘斌 深度学习在 2006 年崭露头角后,近几年取得了快速发展,在学术界和工业界均呈现出指数级增长的趋势;伴随着这项技术的不断成熟,深度...

3708
来自专栏CreateAMind

Sensorimotor Robot Policy Training using RL(ref163篇 90页) 笔记 超长

1094
来自专栏AI科技评论

干货 | 从零开始入门机器学习算法实践

人工智能热潮下,“大数据”、“机器学习”、“深度学习”热词屡见不鲜,但是想要真正掌握核心技术,势必要对机器学习算法有全面理解,这也是深入机器学习的必经之路。 为...

29710
来自专栏机器之心

AAAI 2018 | 如何高效进行大规模分类?港中文联合商汤提出新方法

3458
来自专栏机器之心

学界 | 超越ImageNet:谷歌内建300M图像数据集揭露精度与数据的线性增长关系

F选自Google Research 机器之心编译 参与:蒋思源、路雪 自残差网络以来,深度模型拥有了极大的容量,同时 GPU、TPU 等硬件为深度学习提供了巨...

2689
来自专栏灯塔大数据

塔秘 | DeepMind到底是如何教AI玩游戏的?

导读 DeepMind到底是如何教AI玩游戏的?这篇在Medium上获得1700个赞的文章,把里面的原理讲清楚了。 ? 谷歌的DeepMind是世界一流的AI研...

4138
来自专栏AI科技评论

总结 | 叶志豪:介绍强化学习及其在 NLP 上的应用

AI 科技评论按:当 AlphaGO 横扫之后,越来越多的学者意识到强化学习在人工智能领域所扮演的重要角色。同时随着深度学习的发展,应用深度学习,很多自然语言的...

1103

扫码关注云+社区