用R语言做逻辑回归

用R语言做逻辑回归

jmzeng(jmzeng1314@163.com)

回归的本质是建立一个模型用来预测,而逻辑回归的独特性在于,预测的结果是只能有两种,true or false

在R里面做逻辑回归也很简单,只需要构造好数据集,然后用glm函数(广义线性模型(generalized linear model))建模即可,预测用predict函数。

我这里简单讲一个例子,来自于加州大学洛杉矶分校的课程

首先加载需要用的包

library(ggplot2)
library(Rcpp)

然后加载测试数据

mydata <- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv") ## 这里直接读取网络数据head(mydata)
##   admit gre  gpa rank
## 1     0 380 3.61    3
## 2     1 660 3.67    3
## 3     1 800 4.00    1
## 4     1 640 3.19    4
## 5     0 520 2.93    4
## 6     1 760 3.00    2
#This dataset has a binary response (outcome, dependent) variable called admit. 

#There are three predictor variables: gre, gpa and rank. We will treat the variables gre and gpa as continuous. 

#The variable rank takes on the values 1 through 4.

summary(mydata)
##      admit             gre             gpa             rank      
##  Min.   :0.0000   Min.   :220.0   Min.   :2.260   Min.   :1.000  
##  1st Qu.:0.0000   1st Qu.:520.0   1st Qu.:3.130   1st Qu.:2.000  
##  Median :0.0000   Median :580.0   Median :3.395   Median :2.000  
##  Mean   :0.3175   Mean   :587.7   Mean   :3.390   Mean   :2.485  
##  3rd Qu.:1.0000   3rd Qu.:660.0   3rd Qu.:3.670   3rd Qu.:3.000  
##  Max.   :1.0000   Max.   :800.0   Max.   :4.000   Max.   :4.000
sapply(mydata, sd)
##       admit         gre         gpa        rank 
##   0.4660867 115.5165364   0.3805668   0.9444602
xtabs(~ admit + rank, data = mydata)  ##保证结果变量只能是录取与否,不能有其它!!!
##      rank
## admit  1  2  3  4
##     0 28 97 93 55
##     1 33 54 28 12

可以看到这个数据集是关于申请学校是否被录取的,根据学生的GRE成绩,GPA和排名来预测该学生是否被录取。

  • 其中GRE成绩是连续性的变量,学生可以考取任意正常分数。
  • 而GPA也是连续性的变量,任意正常GPA均可。
  • 最后的排名虽然也是连续性变量,但是一般前几名才有资格申请,所以这里把它当做因子,只考虑前四名!

而我们想做这个逻辑回归分析的目的也很简单,就是想根据学生的成绩排名,绩点信息,托福或者GRE成绩来预测它被录取的概率是多少!

接下来建模

mydata$rank <- factor(mydata$rank)

mylogit <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")

summary(mylogit)
## 
## Call:
## glm(formula = admit ~ gre + gpa + rank, family = "binomial", 
##     data = mydata)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6268  -0.8662  -0.6388   1.1490   2.0790  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -3.989979   1.139951  -3.500 0.000465 ***
## gre          0.002264   0.001094   2.070 0.038465 *  
## gpa          0.804038   0.331819   2.423 0.015388 *  
## rank2       -0.675443   0.316490  -2.134 0.032829 *  
## rank3       -1.340204   0.345306  -3.881 0.000104 ***
## rank4       -1.551464   0.417832  -3.713 0.000205 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 499.98  on 399  degrees of freedom
## Residual deviance: 458.52  on 394  degrees of freedom
## AIC: 470.52
## 
## Number of Fisher Scoring iterations: 4

根据对这个模型的summary结果可知:

  • GRE成绩每增加1分,被录取的优势对数(log odds)增加0.002
  • 而GPA每增加1单位,被录取的优势对数(log odds)增加0.804,不过一般GPA相差都是零点几。
  • 最后第二名的同学比第一名同学在其它同等条件下被录取的优势对数(log odds)小了0.675,看来排名非常重要啊!!!

这里必须解释一下这个优势对数(log odds)是什么意思了,如果预测这个学生被录取的概率是p,那么优势对数(log odds)就是log2(p/(1-p)),一般是以自然对数为底

最后我们可以根据模型来预测啦

## 重点是predict函数,type参数

newdata1 <- with(mydata,                 
data.frame(gre = mean(gre), gpa = mean(gpa), rank = factor(1:4)))

newdata1 
##     gre    gpa rank
## 1 587.7 3.3899    1
## 2 587.7 3.3899    2
## 3 587.7 3.3899    3
## 4 587.7 3.3899    4
## 这里构造一个需要预测的矩阵,4个学生,除了排名不一样,GRE和GPA都一样newdata1$rankP <- predict(mylogit, newdata = newdata1, type = "response")

newdata1
##     gre    gpa rank     rankP
## 1 587.7 3.3899    1 0.5166016
## 2 587.7 3.3899    2 0.3522846
## 3 587.7 3.3899    3 0.2186120
## 4 587.7 3.3899    4 0.1846684
## type = "response" 直接返回预测的概率值0~1之间

可以看到,排名越高,被录取的概率越大!!!

log(0.5166016/(1-0.5166016)) ## 第一名的优势对数0.06643082

log((0.3522846/(1-0.3522846))) ##第二名的优势对数-0.609012

两者的差值正好是0.675,就是模型里面预测的!

newdata2 <- with(mydata,                 data.frame(gre = rep(seq(from = 200, to = 800, length.out = 100), 4),                            gpa = mean(gpa), rank = factor(rep(1:4, each = 100))))##newdata2##这个数据集也是构造出来,需要用模型来预测的!newdata3 <- cbind(newdata2, predict(mylogit, newdata = newdata2, type="link", se=TRUE))## type="link" 返回fit值,需要进一步用plogis处理成概率值## ?plogis The Logistic Distributionnewdata3 <- within(newdata3, {
  PredictedProb <- plogis(fit)
  LL <- plogis(fit - (1.96 * se.fit))
  UL <- plogis(fit + (1.96 * se.fit))})

最后可以做一些简单的可视化

head(newdata3)
##        gre    gpa rank        fit    se.fit residual.scale        UL
## 1 200.0000 3.3899    1 -0.8114870 0.5147714              1 0.5492064
## 2 206.0606 3.3899    1 -0.7977632 0.5090986              1 0.5498513
## 3 212.1212 3.3899    1 -0.7840394 0.5034491              1 0.5505074
## 4 218.1818 3.3899    1 -0.7703156 0.4978239              1 0.5511750
## 5 224.2424 3.3899    1 -0.7565919 0.4922237              1 0.5518545
## 6 230.3030 3.3899    1 -0.7428681 0.4866494              1 0.5525464
##          LL PredictedProb
## 1 0.1393812     0.3075737
## 2 0.1423880     0.3105042
## 3 0.1454429     0.3134499
## 4 0.1485460     0.3164108
## 5 0.1516973     0.3193867
## 6 0.1548966     0.3223773
ggplot(newdata3, aes(x = gre, y = PredictedProb)) +
  geom_ribbon(aes(ymin = LL, ymax = UL, fill = rank), alpha = .2) +
  geom_line(aes(colour = rank), size=1)

原文发布于微信公众号 - 生信技能树(biotrainee)

原文发表时间:2017-04-05

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据文摘

引入秘密武器强化学习,发掘GAN在NLP领域的潜力(附公开课)

1261
来自专栏AI研习社

针对 3D 计算机视觉的简介

随着 AR / VR 技术和自动驾驶汽车技术的发展,3D 视觉问题变得越来越重要,它提供了比 2D 更丰富的信息。本文将介绍两种用于 3D 场景分析的基本深度学...

942
来自专栏机器学习算法与Python学习

扩展 | 3D 计算机视觉简介

随着 AR / VR 技术和自动驾驶汽车技术的发展,3D 视觉问题变得越来越重要,它提供了比 2D 更丰富的信息。本文将介绍两种用于 3D 场景分析的基本深度学...

472
来自专栏量化投资与机器学习

【年度系列】使用LSTM预测股票市场基于Tensorflow

在本文开始前,作者并没有提倡LSTM是一种高度可靠的模型,它可以很好地利用股票数据中的内在模式,或者可以在没有任何人参与的情况下使用。写这篇文章,纯粹是出于对机...

1203
来自专栏专知

【360人工智能研究院与NUS颜水成团队】HashGAN:基于注意力机制的深度对抗哈希模型提升跨模态检索效果

【导读】近日,中山大学、新加坡国立大学和奇虎360人工智能研究院团队提出了一种具有注意机制的对抗哈希网络(adversarial hashing network...

3705
来自专栏闪电gogogo的专栏

莫凡《机器学习》笔记

机器学习方法 1.1 机器学习 通常来说, 机器学习的方法包括: 监督学习 supervised learning:(有数据有标签)在学习过程中,不断的向计算...

4434
来自专栏机器之心

教程 | 如何使用TensorFlow构建、训练和改进循环神经网络

选自SVDS 作者:Matthew Rubashkin、Matt Mollison 机器之心编译 参与:李泽南、吴攀 来自 Silicon Valley Dat...

2849
来自专栏专知

【干货】IRGAN :生成对抗网络在搜狗图片搜索排序中的应用

来源:8层会议室-知乎专栏 https://zhuanlan.zhihu.com/p/31373052 一:背景 2014年,GAN之父Ian Goodfell...

4777
来自专栏机器之心

学界 | 迁移学习 + BPE,改进低资源语言的神经翻译结果

选自arXiv 作者:Toan Q Nguyen、David Chiang 机器之心编译 参与:李亚洲、路雪 在本论文中,作者结合迁移学习与 BPE 方法,使用...

28811
来自专栏机器学习算法全栈工程师

CNN模型之SqueezeNet

作者: 叶 虎 编辑:赵一帆 01 引言 SqueezeNet是Han等提出的一种轻量且高效的CNN模型,它参数比AlexNet少50x,但模型性能(acc...

4816

扫码关注云+社区