周刊|MXNet爆红,大神Yann LeCun和吴恩达最新演讲

美国时间 11 月 22 日,亚马逊 CTO Werner Vogels 在博文中写到 MXNet 被 AWS 正式选择成为其云计算的官方深度学习平台。

MXNet 是一个全功能、灵活且高扩展性的深度学习框架,支持深度学习模型中的卷积神经网络和长期短期记忆网络。由学术界发起,由华盛顿大学和卡内基梅隆大学的研究人员联合发起。

MXNet 联合发起人解浚源表示:

“MXNet 发展到现在有一年多时间,是一个相对成熟的项目。我对我们的技术很有信心。MXNet 的速度,节省内存,接口灵活性,和分布式效率都是可圈可点的。作为一个由爱好者发起,没有投资的项目,MXNet 以前最大的短板是文档和宣传。而 Amazon 作为大财主以后在这方面可以起到很好的作用。”

Yann LeCun最新演讲: AI 研究的下一站是无监督学习

LeCun 在卡内基梅隆大学机器人研究所进行了一场 AI 技术核心问题与发展前景的演讲。他在演讲中提到三点干货:

1. 无监督学习代表了 AI 技术的未来。 2. 当前 AI 应用的热点集中在卷积神经网络。 3. 用模拟器提高无监督学习的效率是大势所趋。

如今的深度学习系统现在用的都是监督学习(supervised learning),输入的数据被人为加上标签。接下来的挑战在于,怎么让机器从未经处理的、无标签无类别的数据中进行学习,比方说视频和文字。而这就是无监督学习(unsupervised learning)。

Yann LeCun 做了一个比喻:假设机器学习是一个蛋糕,强化学习是蛋糕上的一粒樱桃,监督学习是外面的一层糖衣,无监督学习则是蛋糕糕体。无监督学习的重要性不言而喻。为了让强化学习奏效,也离不开无监督学习的支持。

Yann LeCun 表示,神经网络越大,效果就越好(当然前提是数据库大小达到了临界值)。至于为什么会这样,目前仍是一个谜,相关理论研究正在开展。他特别强调了卷积神经网络的重要性和应用,他接着作出预测,下一个将会十分流行的技术是记忆增强神经网络。它可被理解为用记忆增强的递归神经网络,其中,记忆本身是一个能被区分的回路,并可以作为学习中的一部分用于训练。

谷歌翻译里程碑:Zero-Shot 系统正式上线

美国时间 11 月 22 日,基于 Zero-Shot 的多语言神经机器学习系统正式登陆谷歌翻译。它目前被应用于新增加的 16 个语言组中的 10个,带来更高的翻译质量和简化的系统架构。我们可以期待在不久的将来,该系统会逐步支持更多的谷歌翻译语种。

Zero-Shot 翻译是指在完成语言 A 到语言 B 的翻译训练之后,语言 A 到语言 C 的翻译不需要再经过任何学习。 它能自动把之前的学习成果转化到翻译任意一门语言,即便工程师们从来没有进行过相关训练。

通过 Zero-Shot,谷歌解决了把神经机器翻译系统扩展到全部语言的难题。有了它,一套系统就可以完成所有语言的互翻。从前两种语言之间都需要多个翻译系统的情况,从此成为了历史。这套架构在翻译其他语言时,不需要在底层 GNMT 系统做任何改变。只需在输入语句的开头插入一个输出语种标记,就可以把结果翻译为任意语言。

吴恩达回顾百度语音三年历程

11月 22日,百度举行了语音开放平台三周年主题活动,百度首席科学家吴恩达现场发表演讲。他表示百度大脑最核心的几个技术部分为:

语音 图像 自然语言处理 用户画像 机器学习平台

这几年来,我们的团队在不断地优化语音识别系统。在2012年开始使用DNN模型,后来有比较好的特征,之后开始用Sequence Discriminative Training,也开始使用LSTM模型,加上CTC,今年我们的团队开发了Deep CNN模型。

在百度大脑已经有好几种不同的人工智能技术,其中比较成熟的,就是我们的语音技术。

在很多最重要的百度产品中,我们已经支持语音输入,包括手机百度、百度地图、百度输入法。如果你还没有试过百度输入法,我希望你试一试,我输入信息时就挺喜欢用百度输入法。还有度秘,最近我们把度秘放入各类硬件中,比如小度机器人。

在百度大脑开放平台(ai.baidu.com)上,我们不仅输出人工智能技术,也有很多有关人工智能技术的培训资料。如果你是使用百度大脑开放平台,你可以比较容易的选择真正需要的技术部分把它放进来,把它融合,为你做到最好的效果。再比如说你想服务一个智能客户,开始的时候觉得只需要语音识别、语音合成技术,但是做了几个月以后,发现你需要最领先的自然语言处理技术。如果你是使用百度大脑开放平台,希望你比较容易拿到这些技术放到自己的产品中。

我个人对人工智能的未来充满信心,我希望未来我们会有陪伴机器人、个性化私教、音乐作曲、机器人医生等等。

科大讯飞刘庆峰讲述他眼中的人工智能

11 月 23 日,科大讯飞举行了年度发布会,董事长刘庆峰的做了主题演讲,他表示 2016 年已经成了中国人工智能的历史元年,人工智能的第三次大潮,已经切实到来了,已经不再是一个概念,而是可以进入一个又一个的行业。

人工智能有 3 个层次:计算智能(机器人能计算和存储)、感知智能(机器的视觉、听觉可以超过人工)和认知智能(未来的核心)。而以语音和语言为入口的认知计算,是人工智能的必由之路。

讯飞在众多国际比赛中都获得傲人成绩。全球的语音合成大赛暴风雪竞赛中,讯飞在英文领域获得全球第一名,把英语合成做到了超过普通人说话水平。 在Chime语音识别竞赛中,在噪音环境下讯飞的英文语言错误率只有 2.24%。在 2014 年国际口语翻译大赛( IWSLT)中, 讯飞获得英汉翻译、汉英翻译两个项目的全球第一。另外在 Winogard 认知智能测试、 KBP 认知大赛中,讯飞都获得了不菲成绩。

所以这些在国际顶尖舞台上的认知成果,真正证明了我们中国人在人工智能领域已经不仅仅是一个科普、科幻或者带有所谓先知角度的感性判断,而是在踏踏实实做理论创新。

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2016-11-27

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技大本营的专栏

TensorFlow可以做什么?让Google Brain首席工程师告诉你

编辑 | 明明 1月19日,在极客公园创新者大会IF2018的现场,Google Brain首席工程师陈智峰发表题为:《找答案从定义问题开始 ——TensorF...

4055
来自专栏机器之心

Science组织了一场尖锐的Reddit问答,Yann LeCun的回答还是那么耿直

34213
来自专栏人工智能快报

剑桥科学家用两百万段视频教会人工智能预测未来

人工智能系统可以预测场景如何展开,也可以设想不久的将来。 对于静止画面,深度学习算法生成的微视频可以预测接下来可能发生的场景。例如,如果展示的是一幅火车站的场景...

3667
来自专栏AI科技评论

从 Google Trends,看各大深度学习框架使用热度

AI 科技评论按:随着深度学习在计算机视觉、自然语言处理等领域取得的成果越来越显著,对深度学习的讨论越来越多。作为当下最热门的话题,从 2015 年至今,短短三...

812
来自专栏新智元

【干货】杨强:从机器学习到迁移学习 | GAITC 演讲(附PPT)

【新智元导读】杨强教授认为,DeepMind把端到端的深度学习应用在强化学习上,使得强化学习能够应付大数据,因此能在围棋上把人类完全击倒,它做到这样是通过完全的...

30910
来自专栏人工智能快报

人工智能算法被用于分析LHC数据

如果粒子物理学家与人工智能研究人员各自独立开展工作,那么下一代粒子对撞机实验将需要采用一些世界上最先进的思维机器。这些机器应能基于少量的信息发现更多信息。在瑞士...

36213
来自专栏AI科技评论

论文 | 百度「一次包会」模型:「一次性」教会Agent认新事物

百度 Research 在近日发表了一篇博文,介绍了通过交互式对话来教 AI 智能体学会语言和一次性实现主动概念学习的方法。

1322
来自专栏奇点大数据

深度学习与人工智能技术趋势

看一下AI系统,今天所有的应用,不管是影像、声音或者是图像的识别,或者一种语言翻译到另外一种语言,以及测试等,这些都是AI的一些特点。AI要实现这些特点都需要去...

964
来自专栏AI科技大本营的专栏

CCAI 2017 | 漆远:蚂蚁金服 AI 技术大揭秘, 开放“模型服务平台”

7 月 22 - 23 日,在中国科学技术协会、中国科学院的指导下,由中国人工智能学会、阿里巴巴集团 & 蚂蚁金服主办,CSDN、中国科学院自动化研究所承办的 ...

37213
来自专栏云加头条

王之捷:AI智能云端架构大幅提升智能语音识别能力

腾讯云AI业务架构师王之捷分享了腾讯云在人工智能、尤其在智能云方面的最新进展,以及如何将这些能力应用到工作当中。 [1506418627111_7828_150...

5376

扫码关注云+社区