开发 | 低配硬件就不能运行深度神经网络了?手把手教你克服“杀牛用鸡刀”难题

如果对深度学习有所了解的小伙伴们想必都知道,深度学习需要使用强大的服务器、加速嵌入式平台(如NVIDIA的Jetson)来运行深度学习算法,然而这也同样意味着不菲的开支。

那么问题来了,如果你想你想用树莓派来做一个目标跟踪器,为你看家守院,这可以实现吗?换句话说,如果你需要在不带加速器的ARM CPU上运行卷积神经网络了怎么办?

AI科技评论想,大概就会像下图这位小哥一样,处境尴尬。

来自德国初创企业 BuddyGuard GmbH 的机器学习工程师 Dmytro Prylipko 就为我们提供了一个可行的“杀牛不用鸡刀”的解决方案,AI科技评论编译,未经许可不得转载。

如何优化推理时间?

机器学习社区为缩短神经网络的推理时间,已经研究了一段时间,研究得出可行的解决方案还是相当多的。本文将尝试回答一个简单的问题:什么库/工具包/框架可以帮助我们优化训练模型的推理时间?本文只讨论已为ARM架构芯片提供C / C ++接口的工具包和库(由于嵌入式设备上使用 ,我们很少Lua 或 Python),限于文章篇幅,不阐述另外一种加速神经网络推理的方法,即修改网络架构,从SqeezeNet架构可看出,修改网络架构是一个可行的方案。基于上述原因,本文涉及的实验只涉及使用Caffe,TensorFlow和MXNet这3个开源的深度学习框架。

加速神经网络模型在硬件平台计算速度,两个主要有大的策略:

1)修改神经网络的模型;

2)加快框架运行速度。

当然,将这两个策略结合起来使用,也是一种不错的思路。

修改神经网络模型有两种方法,一是通过降低权重精度实现,即降低特征量化的精度,二是通过权重剪枝来实现,权重剪枝的背后的思想是降低系统参数的冗余。降低权重低精度通常采用(用定点数或动态定点数表示浮点数的方法,支持这种做法的原理是:推理过程并不需要高精度,因为在运算过程中,计算的线性性质和非线性的动态范围压缩,使得量化误差仅在子线性地(sub-linearly)范围内传递,从而不会引起数值的剧烈变动。更进一步,我们可以使用低精度乘法来训练神经网络模型。结合 SIMD 指令集,比如 SSE3,可以使特征量化过程可以更为高效,从而加速训练过程。然而,目前我们还很难找到同时使用了这两者的解决方案。比如使用Ristretto框架可以执行有限精度的自动量化,但它却并没有降低计算负载。TensorFlow 也可以执行量化,但其推理时间实际上却增加了 5 到 20 倍,因为TensorFlow还引入了辅助量化/去量化的计算节点。因此在实际操作中,我们只把量化作为压缩网络权重的方法,当存储空间有限时可以这样操作,至少这已经是当前最先进的技术。

从另外一个角度看,我们可采用加快框架的执行时间的方法,这种方法不会影响到模型的参数。这种策略主要上采用优化矩阵之间的乘法(GEMM)类的通用计算技巧,从而同时影响卷积层(其计算通常是 im2col + GEMM)和全连接层。除此之外,可以使用神经网络的加速包NNPACK,就个人理解,NNPACK的核心思路是使用快速傅里叶变换将时间域中的卷积运算转换成了频域中的乘法运算。

加快框架执行速度另一种方法是将网络模型和权重配置转换成针对目标平台代码,并对代码进行优化,而不是让它们直接在某一个框架内运行。这种方法的典型案例是 TensorRT。还有 CaffePresso, 可以将 Caffe中prototxt类型的文件定制成适用于各种不同硬件平台的低规格版本。然而,TensorRT 的运行需要CUDA,而且只能在 NVIDIA的 GPU中才能使用,而 CaffePresso 也需要某种硬件加速器(DSP、FPGA 或 NoC),所以这两种方法都不适合用于我的测试硬件——树莓派。

上述内容仔细地评估现有的解决办法后,我发现以下几种方法能够加速当前流行的可用模型的推理:

  • 如果你的框架中使用了 OpenBLAS(基础线性代数程序集的开源实现),你可以尝试使用其为深度学习进行过优化的分支: https://github.com/xianyi/OpenBLAS/tree/optimized_for_deeplearning
  • NNPACK 能和其他一些框架(包括 Torch、Caffe 和 MXNet)联合使用:http://github.com/Maratyszcza/NNPACK
  • 将TensorFlow编译为在树莓派平台的目标代码时,你可以使用一些编译优化标志,从而充分利用NEON 指令集加速目标代码的执行速度:http://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/makefile#raspberry-pi

基于以上3种方法,我概括出以下调测配置:

1. 使用以 OpenBLAS为后端的Caffe 主分支(caffe-openblas);

2. 使用以 OpenBLAS为后端OpenBLAS 且为深度学习优化过的Caffe分支版本(caffe-openblas-dl);

3. 编译TensorFlow时,使用优化编译标志 OPTFLAGS="-Os" (tf-vanilla);

4. 编译TensorFlow时,使用优化编译标志 OPTFLAGS="-Os -mfpu=neon-vfpv4 -funsafe-math-optimizations -ftree-vectorize" (tf-neon-vfpv4);

5. 使用以OpenBLAS实现基础线性代数程序集的Vanilla MXNet;

6. 使用带有 OpenBLAS 、且为深度学习优化过MXNet 分支版本(mxnet-openblas-dl)。

你可能会疑惑:配置中怎么没有 NNPACK?这确实有点复杂,由 ajtulloch 创建的 Caffe 分支提供了最直接的使用 NNPACK方法。然而自从它被集成进去以后,NNPACK 的API接口 就已经改变了,并且目前我无法编译它。Caffe2 对 NNPACK 有原生支持,但我不会考虑 Caffe2,因为它处于实验性阶段并且几乎对 Caffe 进行了尚未文档化的重构。另外一个选项就是使用 Maratyszcza的caffe-nnpack分支,但该分支比较老旧且已经停止维护。

另外一个问题就是出于NNPACK本身。它只提供了Android/ARM平台的交叉编译配置,并不提供在 Linux/ARM 平台上的交叉编译配置。结合MXNet,我尝试编译目标平台代码,但结果无法在目标平台上正常运行。我只能在台式电脑上运行它,但是我并没有看到比 OpenBLAS 会有更好的性能。由于我的目标是评估已经可用的解决方法,所以我只能推迟NNPACK 的实验了。

以上所有的这些方法都是在四核 1.3 GHz CPU 和 1 GB RAM 的树莓派 3 上执行。操作系统是 32 位的 Raspbian,所以检测到的 CPU 不是 ARMv8 架构,而是 ARMv7 架构。硬件规格如下:

model name : ARMv7 Processor rev 4 (v7l) BogoMIPS : 38.40 Features : half thumb fastmult vfp edsp neon vfpv3 tls vfpv4 idiva idivt vfpd32 lpae evtstrm crc32 CPU implementer : 0x41 CPU architecture: 7 CPU variant : 0x0 CPU part : 0xd03 CPU revision : 4

为了评估上述每个测试配置的性能,我制定的测试方案如下:使用相同的神经网络。也就是一个有 3 个卷积层和2个全连接层且在顶层带有Softmax的小型卷积神经网络:

conv1: 16@7x7 relu1pool1: MAX POOL 2x2conv2: 48@6x6 relu2pool2: MAX POOL 3x3conv3: 96@5x5 relu3fc1: 128 unitsfc2: 848 units softmax

该卷积神经网络有 1039744 个参数。虽然非常小,但它已经足够强大了,可以用来处理许多计算机视觉算法。该网络使用 Caffe 进行训练人脸识别任务,并将其转换为 TensorFlow 和 MXNet 格式,从而使用这些框架进行评估。批量执行次数对性能有很大的影响,为了测量前向通过时间(forward pass time),我们将批量执行的次数设置为 1 到 256。在不同次数的批量执行中,我们每次执行 100 次前向通过,并计算了每一张图像的平均处理时间。

评估结果和讨论

在下面的表格中,列出了平均前向通过的时间。其中,A 是 caffe-openblas, B 是 caffe-openblas-dl, C 代表 tf-vanilla, D 是 tf-neon-vfpv4, E 是 mxnet-openblas, F 是 mxnet-openblas-dl。

表1 不同测试配置在不同的批处理次数下的性能表现

图1 线性尺度下不同配置的前向通过时间比较

在对数尺度尺度上我们再来看一下:

图2 对数尺度下不同配置的前向通过时间比较

测试结果让我大吃一惊。首先,我没有预料到在 CPU 上运行 MXNet的性能会这么差。但这看起来已经是一个众所周知的问题。此外,受限于存储空间,它无法运行 256 张图片的批处理。第二个惊奇是优化过的 TensorFlow 竟有如此好的性能。它甚至比 Caffe 的表现还好(批处理次数超过2时),光从原始框架上看是很难预料这个结果的。需要注意的是,上述测试配置中的优化标志并不是在任意 ARM 芯片上都可以使用的。

Caffe 因速度非常快和思路独到而知名。如果你需要连续地处理图片,可以选择使用优化过的 OpenBLAS 的 Caffe,可得到最好的处理性能。如果想提升10ms 的性能,你所要做的就只是简单的输入以下指令:

cd OpenBLAS git checkout optimized_for_deeplearning

为了将我的研究转变成正式的东西,我仍需要做大量的工作:评估更多的模型,最终集成 NNPACK,以及研究更多结合了BLAS 后端的框架。AI科技评论希望本文能帮助你了解目前最流行的解决方案的推理速度。

via How to run deep neural networks on weak hardware

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-02-01

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏用户画像

Facebook 推荐算法

版权声明:本文为博主-姜兴琪原创文章,未经博主允许不得转载。 https://blog.csdn.net/jxq0816/article/details/816...

883
来自专栏AI研习社

手把手教你入门使用tf-slim库 | 回顾

tf-slim是基于tensorflow的高层封装库,包含了目前最新的reset-net,Google-Inception等网络的实现及图像处理算法,支持多GP...

3696
来自专栏专知

【开源】基于Keras的知识图谱处理实战

【导读】近日,Daniel Shapiro博士利用开源的图结构卷积网络进行知识图谱处理,并应用于交易数据的欺诈检测,其知识图谱处理相关源码也开源出来,并且Dan...

4044
来自专栏专知

【专知中秋呈献-PyTorch手把手深度学习教程03】LSTM快速理解与PyTorch实现: 图文+代码

首先祝各位专知好友,中秋佳节快乐! 【导读】主题链路知识是我们专知的核心功能之一,为用户提供AI领域系统性的知识学习服务,一站式学习人工智能的知识,包含人工...

3596
来自专栏AI科技评论

开发 | 手工搭建神经网络太费劲?来试试精确度高达94.1%的进化算法

AI科技评论按:阳春三月,辽阔的南美洲大草原上,两只体格强健的雄性美洲豹正在为争夺一只拥有美丽花纹的雌豹,进行着一场血腥而又激烈的较量。它们心里很清楚,成者为王...

33714
来自专栏大数据文摘

分辨真假数据科学家的20个问题及回答

1643
来自专栏人工智能头条

机器学习即服务之BigML特性介绍和入门教程

1345
来自专栏人工智能头条

理解 LSTM 网络

1263
来自专栏AI科技评论

谷歌机器学习白皮书全解析 43条黄金法则(一)

编者按:此文由AI科技评论独家编译,未经许可拒绝转载。此白皮书为谷歌总结的机器学习(ML)最优实践方法,浓缩了其多年技术积累与经验,尤其是 Youtube、Go...

4146
来自专栏智能算法

深度学习漫游指南:强化学习概览

本文是NVIDIA博客上Tim Dettmers所写的《Deep Learning in a Nutshell》系列文章的第四篇。据介绍,该系列文章的目的是「提...

3105

扫描关注云+社区